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1Met Of� ce, UK
2Meteorological Service of Canada, Canada

(Received 28 January 2002; revised 29 April 2002)

SUMMARY

A methodology for analysing the numerical properties of schemes for coupling physics parametrizations to
a dynamical core is presented. As an example of its application, the methodology is used to study four coupling
schemes (‘explicit’, ‘implicit’, ‘split-implicit’ and ‘symmetrized split-implicit’) in the context of a semi-implicit
semi-Lagrangian dynamical core. Each coupling scheme is assessed in terms of its numerical stability and of the
accuracy of both its transient and steady-state responses. Additionally, the occurrence of spurious, computational
resonance is analysed and discussed. It is found that in this respect all four schemes behave similarly. In particular,
in the absence of any damping mechanism to control resonance, the time-step restriction needed to avoid spurious
resonance is twice as restrictive for time-dependent forcing as for stationary forcing.
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1. INTRODUCTION

Physical parametrization packages form an increasingly large and important com-
ponent of a modern numerical weather and climate prediction model. However, rela-
tively little attention has been given to the details and implications of how such schemes
are coupled to the underlying dynamical core of such models. To provide useful insight
into this physics–dynamics coupling issue, Caya et al. (1998), hereinafter referred to as
CLZ98, examined steady-state solutions of numerical discretizations of

dF .t/

dt
C ¾ F .t/ D G; (1.1)

where ¾ (¯ in CLZ98’s notation) and G are constants. The variable F .t/ is the
dependent variable and, in order to simplify the problem, was chosen to be a function
of time only. It is a scalar. The problem is intended to give a framework for the
analysis of NWP or climate models which have highly coupled equation sets. In this
context, F represents a linear normal mode of those equations, and (1.1), as well as
its extensions presented later, represents the evolution equations of such forced normal
modes (e.g. Daley (1991)). The term G is a constant forcing, chosen to model a constant
diabatic heating in a full model. The ¾ F term represents either a damping mechanism
(e.g. boundary-layer diffusion) if ¾.>0/ is purely real, or an oscillatory one if ¾ is
purely imaginary, and attention was focused on the latter to represent a semi-implicit
discretization of the terms responsible for gravitational oscillations.

CLZ98’s canonical problem has the virtue of providing a very useful insight into
the physics–dynamics coupling of a model by reducing a particular computational
problem to its essence. Obtaining further insight into physics–dynamics coupling issues
is however hindered by the very simplicity of the CLZ98 problem. Therefore, here
an enhanced canonical problem that subsumes the CLZ98 one is de� ned and its
exact solution given. It includes: (a) spatio-temporal, instead of constant, forcing;
(b) horizontal advection (allowing the examination of real and spurious resonance); and
(c) the possibility of simultaneously including several parametrized terms, each of which
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may have its own temporal discretization. These generalizations permit the examination
of a broader set of numerical physics–dynamics coupling issues while still keeping the
analysis tractable.

The use and bene� ts of the enhanced canonical problem are demonstrated by
applying it to the case of a two-time-level semi-implicit semi-Lagrangian discretization
of the underlying dynamics. Four strategies for coupling this dynamical model to the
physics forcing are considered. These schemes were introduced and analysed in the
context of the problem of CLZ98 (modi� ed to allow different discretizations of both
oscillatory and damping processes occurring simultaneously) by Staniforth et al. (2002).
Two of the schemes, referred to here as the ‘explicit’ and ‘split-implicit’ schemes, are
essentially equivalent to two of the schemes studied by CLZ98 in their simpler problem.
Here, an ‘implicit’ coupling is also examined since, for the canonical problem proposed
herein, this coupling is arguably ideal from the perspectives of stability and accuracy,
although it is sub-optimal in terms of ef� ciency. The remaining one, the ‘symmetrized
split-implicit’ coupling, aims to combine the stability and accuracy properties of the
implicit coupling with the ef� ciency of the less-accurate split-implicit one.

A speci� c issue that is addressed by these applications of the enhanced canonical
problem is that of spurious computational resonance. Assuming that the advection term
is treated in a semi-Lagrangian manner, previous analyses (e.g., Rivest et al. (1994),
Côté et al. (1995), Héreil and Laprise (1996)) suggest that spurious semi-Lagrangian
resonance is likely to occur for stationary, spatially dependent forcing (such as that
caused by orography) when the Courant number approximately equals or exceeds
unity. Questions which may be asked and which are addressed by the analysis are:
‘How serious a problem is spurious resonance due to stationary forcing for the four
coupling schemes considered herein?’, ‘What is the impact of allowing the forcing to
vary not only in space but also in time?’ and ‘How well do the considered schemes
handle forcing in general, both constant and spatio-temporally varying forcing?’.

The purpose of the paper is, � rstly, to provide a fairly general framework for
analysing, tractably, the numerics of physics–dynamics coupling, and, secondly, to
illustrate how to exploit this framework by comparing some of the advantages and
disadvantages of four possible physics–dynamics couplings. The enhanced canonical
problem is de� ned and discussed in section 2. In section 3, the four physics–dynamics
coupling strategies considered herein are de� ned and applied to the canonical problem.
The stability and accuracy of the free, or unforced, solutions for each coupling strategy
are analysed in section 4, whilst the non-resonant and resonant forced solutions are
discussed in sections 5 and 6 respectively. The effects of semi-Lagrangian interpolation
on the analysis are brie� y discussed in section 7 and, � nally, in section 8 a summary of
the results is presented.

2. AN ENHANCED CANONICAL PROBLEM

(a) De� nition and discussion
The canonical problem of CLZ98 is extended here to allow variations in one

horizontal spatial dimension, denoted by x, and also to allow the representation of
any number (indicated by the summations in (2.1)) of dynamics and physics processes.
Therefore, consider the problem

D

Dt
C i

³ X
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C R.x; t/; (2.1)
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to be solved subject to an appropriate initial condition, where

D

Dt
´

@

@t
C U

@

@x
; (2.2)

and ®j ; ¯j > 0; °j and U > 0 are all real constants. R.x; t/ is a forcing term which is
independent of . The equation is therefore linear in and, by the principle of linear
superposition, the solution associated with each Fourier mode of R can be considered
separately. If, further, the forcing associated with the kth mode oscillates in time with
a single frequency Äk (multiple frequencies are discussed later), then (2.1) can be
simpli� ed to the corresponding problem

DF

Dt
C i

³ X

j

®j

´
F D ¡

³ X

j

¯j

´
F ¡ i

³ X

j

°j

´
F C Rk ei.kxCÄk t/; (2.3)

where k and Äk are real constants and Rk is a complex constant. Here k is the horizontal
wave-number in the x direction, and Rk and Äk are respectively the amplitude and
frequency at wave number k of the spatio-temporal forcing. F is that component of
having wave number k and its x dependency is therefore proportional to exp.ikx/.

Equation (2.3), together with (2.2), is the de� nition of the enhanced canonical
problem proposed here. If i

©P
j .®j C °j /

ª
C

¡P
j ¯j

¢
D ¾ and k D U D Äk D 0, then

this problem reduces to CLZ98’s canonical problem (1.1).
The left-hand side of (2.3) models the inviscid dynamics. The i®j F oscillatory

terms represent both the fast dynamical terms that govern the propagation of gravi-
tational and acoustic oscillations and also the Coriolis terms. For numerical stability
reasons, these terms are often discretized in a semi-implicit manner, as examined in the
CLZ98 analysis. Another, though relatively slow, dynamical time-scale, associated with
local advection, is already included via the de� nition (2.2).

The right-hand side of (2.3) represents parametrized physical forcings and allows
the simultaneous examination of various forcings having different time-scales and
different temporal discretizations. The ¯j F and i°j F terms model parametrizations
having, respectively, damping and oscillatory characteristics. For example, setting one
¯j equal to ¡l2º, where º is a constant vertical (horizontal) diffusivity and l is a vertical
(horizontal) wave-number, ¯j F can represent parametrized vertical (horizontal) diffu-
sion effects. This can be a fast time-scale process. Similarly, one of the i°j F terms can
represent fast vertical heat-transport in parametrizations of deep convection, whereas
other ¯j F and i°j F terms might model respectively further damping and oscillatory
parametrizations but, for example, ones that have slow time-scales. The introduction of
the time-varying Rk expfi.kx C Äk t/g term allows the representation of relatively slow,
time-dependent, external forcings such as the diurnal variation of radiation, or of very
rapid external forcings such as variations in radiation due to rapidly-changing cloud
cover and/or cloud properties.

A distinction was made above between fast and slow time-scales because of
differing stability considerations (see, e.g., Grabowski and Smolarkiewicz (1996),
Wedi (1998), Williamson (1999), Teixeira (2000)). An explicit time-discretization of a
slow time-scale process generally has the virtue of simplicity. Also, because the process
is slow, an associated stability-limited time-step does not usually hinder computational
ef� ciency. An O.1t/ accurate discretization therefore arguably suf� ces. For a fast time-
scale process, an explicit time-discretization of it generally unduly limits the time step
because of an over-restrictive stability condition; a more costly time-implicit discretiza-
tion is therefore usually adopted. However, as illustrated by CLZ98, even though this



2782 A. STANIFORTH et al.

can address the stability issue, if the resulting discretization is only O.1t/ accurate, then
the time step may still be unduly limited as a result of time truncation error. This moti-
vates the use of an O.1t/2 accurate time-implicit discretization of such fast processes.
In practice, this is dif� cult to accomplish because the additional complexity associated
with the introduction of such parametrized processes gives rise to problems in ef� ciently
coupling them with the time-discretized dynamics. This issue is further discussed in the
following sections, and an O.1t/2 accurate time-implicit discretization is described and
analysed for the incorporation of, e.g., vertical diffusion.

The enhanced problem proposed here does not depend on time alone but also on
space, because of the replacement of dF=dt in (1.1) by DF=Dt , de� ned by (2.2) and
the introduction of a spatio-temporal forcing term, Rk expfi.kx C Äkt /g. As a result, a
distinct advantage of this canonical problem is that once the analysis is completed, the
effects of different forms of external forcing can be trivially examined without the need
for reanalysis. In its most general form, the analysis gives the response to, for example, a
time- and space-dependentdiabatic-heating term. On the other hand, setting both Äk and
k to zero gives the response to a constant forcing as considered by CLZ98. Setting Äk

alone to zero, keeping k non-zero, gives the response to a stationary forcing, such
as that caused by orography, and this, together with a semi-Lagrangian discretization
of DF=Dt , permits the examination of spurious semi-Lagrangian resonance issues,
something excluded by the CLZ98 canonical problem.

(b) Exact solution
In order to keep the analysis relatively compact, in what follows only one dynamical

oscillatory process and one physical damping process are considered simultaneously.
These are represented respectively by the coef� cients i® and ¯ . No oscillatory physical
process is considered. Then (2.3) reduces to

DF

Dt
C i®F D ¡¯F C Rk ei.kxCÄkt /: (2.4)

In the analytical solutions which follow, the solution to the richer problem of (2.3)
can be obtained by substituting the transformations

® D
X

j

.®j C °j /; (2.5)

and
¯ D

X

j

¯j : (2.6)

In the discrete solutions discussed later this is still true, provided each process repre-
sented by the transformation is discretized in the same manner.

The exact solution to (2.4) is given by the sum of a free and a forced solution:

Fexact.x; t/ D F free
exact.x; t/ C F forced

exact .x; t/; (2.7)

and these solutions are given below.

(i) Free solution. The free solution is that obtained in the absence of any forcing
.Rk ´ 0/. Seeking a solution of the form F free

exact.x; t/ D f .t/ eikx and solving the result-
ing � rst order ODE for f .t/, the free solution to (2.4) is given by

F free
exact.x; t/ D F free

k eikx e¡.i®C¯CikU /t D F free
k eifkx¡.®CkU¡i¯/t g; (2.8)
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where F free
k is the initial amplitude of the kth Fourier component of the free solution,

given by the initial condition

F free
exact.x; 0/ D F free

k eikx : (2.9)

(ii) Forced regular solution for ¯ C i.® C kU C Äk/ 6D 0. When ¯ C i.® C kU C
Äk/ 6D 0 the forced component of the solution is given by

F forced
exact .x; t/ D F

regular
exact .x; t/ ´ F

regular
k ei.kxCÄk t /; (2.10)

where

F
regular
k ´

Rk

¯ C i.® C kU C Äk/
; ¯ C i.® C kU C Äk/ 6D 0; (2.11)

is the initial amplitude of the kth Fourier component of the forced regular solution.
This corresponds to an initial condition

F forced
exact .x; 0/ D F

regular
k eikx : (2.12)

(iii) Forced resonant solution for ¯ C i.® C kU C Äk/ D 0. Resonance occurs for the
singular case ¯ C i.® C kU C Äk/ D 0 and, noting that ¯ and .® C kU C Äk/ are thus
both identically zero, the solution is then

F forced
exact .x; t/ D F resonant

exact .x; t/ ´ F resonant
k ei.kxCÄk t /; ¯ D ® C kU C Äk D 0;

(2.13)
where

F resonant
k ´ Rkt: (2.14)

Equation (2.13) corresponds to the initial condition

F resonant
exact .x; 0/ D 0; ¯ D ® C kU C Äk D 0: (2.15)

(iv) Complete solution. For each Fourier component, the complete solution is the sum
of the free solution and the forced solution, see (2.7). For a single forcing frequency,
Äk , the solution is therefore either

Fexact.x; t/ D F free
k eifkx¡.®CkU¡i¯/t g

C
Rk ei.kxCÄk t /

¯ C i.® C kU C Äk/
; for ¯ C i.® C kU C Äk/ 6D 0; (2.16)

or

Fexact.x; t/ D .F free
k C Rk t/ eifkx¡.®CkU/t g; for ¯ D ® C kU C Äk D 0: (2.17)

In general, though, each wave number may be forced by a spectrum of frequencies.
The single forcing term in (2.4), Rk expfi.kx C Äkt /g, is then replaced by

X

Äk

Rk;Äk ei.kxCÄk t /; (2.18)

where the sum is over all frequencies, Äk, and Rk;Äk is the amplitude of the forcing at
frequency Äk . Then, by linear superposition, the complete solution is either

Fexact.x; t/ D F free
k eifkx¡.®CkU ¡i¯/tg C

X

Äk

Rk;Äk ei.kxCÄk t/

¯ C i.® C kU C Äk/
for ¯ 6D 0;

(2.19)
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or

Fexact.x; t/ D .F free
k C Rk;¡.®CkU/t/ eifkx¡.®CkU/t g

C
X

Äk 6D¡.®CkU/

Rk;Äk ei.kxCÄk t/

i.® C kU C Äk/
for ¯ D 0: (2.20)

(v) Forced steady-state .Äk D 0/ solution for ¯ C i.® C kU/ 6D 0. An interesting spe-
cial case is the forced steady-state response of the solution when there is no resonance.
Since then ¯ C i.® C kU/ 6D 0, it can be seen from (2.16) that a steady-state solution

F
steady
exact .x/ D

Rk eikx

¯ C i.® C kU/
(2.21)

to (2.4) exists when
Äk ´ 0; (2.22)

and either
F free

k ´ 0; (2.23)

or
¯ > 0: (2.24)

The � rst and second conditions respectively exorcize the transient forced and free
components of the � ow, while the third ensures that any initially non-zero transient
ultimately decays to zero, albeit after in� nite time.

3. APPLICATIONS OF THE CANONICAL PROBLEM TO SOME COUPLING DISCRETIZATIONS

The canonical problem proposed above is now applied to analyse some physics–
dynamics coupling strategies. In what follows, the left-hand side of (2.4), which rep-
resents the dynamics, is always discretized using an off-centred, semi-implicit, semi-
Lagrangian scheme. However, four different discretizations are applied to the right-
hand-side terms and each represents a different coupling strategy.

(a) ‘Implicit’ (‘explicit’)
The ‘implicit’ (‘explicit’) discrete forms of (2.4) are obtained by applying an off-

centred semi-implicit semi-Lagrangian discretization (Rivest et al. (1994)) to all terms
in (2.4), giving the discrete form as

F .x; t C 1t/ ¡ F .x ¡ a; t/

1t
C i®f»1F .x; t C 1t/ C .1 ¡ »1/F .x ¡ a; t/g

D ¡¯f»2F .x; t C 1t/ C .1 ¡ »2/F .x ¡ a; t/g C »3Rk eikxCiÄk.tC1t/

C .1 ¡ »3/Rk eik.x¡a/CiÄk t ; (3.1)

where
a D U1t; (3.2)

is the displacement in x of a particle during time 1t so that x ¡ a corresponds to the
semi-Lagrangian departure point. The off-centring coef� cients »1, »2 and »3, possibly of
different value (»1 D »2 D »3 D ½ corresponds to the classical Crank–Nicolson scheme),
have been introduced in anticipation of analysis of resonance.
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If »2 6D 0, then (3.1) is an implicit coupling between the dynamics (left-hand-
side) and physics (right-hand-side) terms, since F .x; t C 1t/ appears in both. If,
however, »2 D 0, then it is an explicit coupling (cf. Eq. 9 of CLZ98 for the special case
»1 D »3 D ½, ¯ D 0 and Äk D 0).

As noted above, the Rk expfi.kx C Äk t/g term can be interpreted in different ways,
and here are two. Setting Äk D 0, it can represent stationary forcing (such as that caused
by orography) and the usual averaging of dynamical terms along the trajectory would
set »3 identically equal to »1. Setting »3 D 0, it can instead represent a spatio-temporal
physics forcing which is explicitly evaluated upstream in the spirit of CLZ98.

In the context of the enhanced canonical problem, the explicit and implicit cou-
plings can be considered to represent two ideals. On the one hand, the explicit coupling
is ideal from the point of view of simplicity. The physics terms, which in a full model
are highly nonlinear, are evaluated explicitly using values at time t only, but the time
step is consequently, and unfortunately, severely limited by the stability constraint as-
sociated with the explicit time-discretization of the fast parametrizations (e.g. vertical
diffusion). On the other hand, the implicit coupling is then arguably ideal because of its
good stability and accuracy properties but, in the full model context, the coupling of the
physics with the dynamics then leads to a highly nonlinear discrete problem to solve.

(b) ‘Split-implicit’
Discretizing the terms on the right-hand side of (2.4) in the spirit of the ‘split-

implicit’ coupling of CLZ98 results in the two-step discretization of (2.4)

F ¤.x/ ¡ F .x ¡ a; t/

1t
C i®f»1F ¤.x/ C .1 ¡ »1/F .x ¡ a; t/g D 0; (3.3)

F .x; t C 1t/ ¡ F ¤.x/

1t

D ¡¯F .x; t C 1t/ C »3Rk eikxCiÄk.tC1t/ C .1 ¡ »3/Rk eik.x¡a/CiÄk t ; (3.4)

where again the off-centring coef� cients, possibly of different value (»1 D ½ corre-
sponds to the classical centred semi-implicit scheme for the dynamics terms), have
been introduced in anticipation of analysis of resonance. Both steps are implicit and the
second step, in the context of vertical diffusion, can be accomplished by solving a set
of tri-diagonal problems in the vertical. The off-centring of the time-dependent forcing
term allows the analysis to include the full range of time weightings of this term from
fully implicit to fully explicit. The � rst step of the split-implicit coupling is a dynamics-
only predictor, while the second is a physics-only corrector. This keeps the physics
discretization distinct from that of the dynamics. Eliminating F ¤ from (3.3) and (3.4)
yields the equivalent coupling equation

F .x; t C 1t/ ¡ F .x ¡ a; t/

1t
C i®f»1.1 C ¯1t/F .x; t C 1t/ C .1 ¡ »1/F .x ¡ a; t/g

D ¡¯F .x; t C 1t/ C .1 C i®1t»1/f»3Rk eikxCiÄk .tC1t/

C .1 ¡ »3/Rk eik.x¡a/CiÄk t g: (3.5)

Instead of evaluating the forcing term »3Rk expfikx C iÄk.t C 1t/g C .1 ¡ »3/Rk

£ expfik.x ¡ a/ C iÄk tg in the physics sub-step (3.4), it could alternatively be eval-
uated in the dynamics sub-step (3.3) where, for example, it could represent stationary
orographic forcing (with Äk set identically to zero). The .1 C i®1t»1/ factor on the
right-hand side of the equivalent coupling equation (3.5) would then be absent. Since the
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left-hand side of this equation would remain unchanged, the only impact this has on
the analysis is to modify the spatial averaging of the forcing term slightly, with the
consequences that the conditions for the stability and for resonance to occur would also
remain unchanged, and that only the amplitude of the forced response would be slightly
modi� ed. Thus this alternative split-implicit coupling is not pursued further herein.

(c) ‘Symmetrized split-implicit’
The implicit coupling is O.1t2/ accurate if »1 D »2 D »3 D ½ (or almost so with

slight decentring), it is unconditionally stable, and it leads to the exact steady-state
for constant forcing. Although from the stability and accuracy viewpoints the implicit
coupling is very good, it nevertheless has the important drawback of being dif� cult
to implement in a computationally ef� cient manner. This motivates the ‘symmetrized
split-implicit’ coupling which aims to achieve the advantages of the implicit coupling
without compromising computational ef� ciency. It comprises the following three-step
discretization of (2.4)

F ¤.x/ ¡ F .x; t/

1t
D ¡.1 ¡ »2/¯F .x; t/ C .1 ¡ »3/Rk eikxCiÄk t ; (3.6)

F ¤¤.x/ ¡ F ¤.x ¡ a/

1t
C i®f»1F ¤¤.x/ C .1 ¡ »1/F ¤.x ¡ a/g D 0; (3.7)

F .x; t C 1t/ ¡ F ¤¤.x/

1t
D ¡»2¯F .x; t C 1t/ C »3Rk eikxCiÄk.tC1t/; (3.8)

where off-centring parameters (»1 D ½ corresponds to the classical centred semi-
implicit semi-Lagrangian scheme for the dynamics terms) have again been introduced
in anticipation of analysis of resonance. Note that F ¤.x ¡ a/ in (3.7) satis� es (3.6) but
with x everywhere replaced by .x ¡ a/. The � rst step is explicit and the other two are
implicit. The third step, in the context of vertical diffusion, can again be accomplished
by solving a set of tri-diagonal problems in the vertical.

The symmetrized split-implicit coupling can be considered to be a ‘weak coupling’,
and comprises two physics discretizations symmetrically arranged around the dynamics
discretization. Eliminating F ¤ and F ¤¤ from (3.6) to (3.8) yields the equivalent coupling
equation

F .x; t C 1t/ ¡ F .x ¡ a; t/

1t
C i®[»1.1 C ¯1t»2/F .x; t C 1t/

C .1 ¡ »1/f1 ¡ ¯1t.1 ¡ »2/gF .x ¡ a; t/]

D ¡¯f»2F .x; t C 1t/ C .1 ¡ »2/F .x ¡ a; t/g C .1 C i®1t»1/»3Rk eikxCiÄk.tC1t/

C f1 ¡ i®1t.1 ¡ »1/g.1 ¡ »3/Rk eik.x¡a/CiÄk t : (3.9)

Instead of evaluating the forcing terms .1 ¡ »3/Rk expfik.x ¡ a/ C iÄk tg and
»3Rk expfikx C iÄk.t C 1t/g on the respective right-hand sides of the physics sub-
steps (3.6) and (3.8), they could instead be evaluated together on the right-hand side of
(3.7) as .1 ¡ »3/Rk expfik.x ¡ a/ C iÄk tg C »3Rk expfikx C iÄk.t C 1t/g, and again
it would be possible to represent stationary orographic forcing in the dynamics sub-
step. The .1 C i®1t»1/ and f1 ¡ i®1t.1 ¡ »1/g factors on the right-hand side of the
equivalent coupling equation (3.9) would then be absent. Since the left-hand side of
this equation would remain unchanged, the only impact this has on the analysis is to
modify the spatial averaging of the forcing term slightly, with the consequences that the
conditions for stability and for resonance to occur would also remain unchanged, and
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that only the amplitude of the forced response would be slightly modi� ed. Thus, this
alternative symmetrized split-implicit coupling is not pursued further herein.

4. STABILITY AND ACCURACY OF THE FREE SOLUTION

(a) Stability
Stability of the free solution is examined via a standard von Neumann stability

analysis (Haltiner and Williams 1980).
For the implicit coupling (3.1), the free component of the � ow satis� es

F free.x; t C 1t/ ¡ F free.x ¡ a; t/

1t
C i®f»1F free.x; t C 1t/ C .1 ¡ »1/F free.x¡ a; t/g

C ¯f»2F free.x; t C 1t/ C .1 ¡ »2/F free.x ¡ a; t/g D 0: (4.1)

From the initial condition (2.9), F free.x; t/ is expanded as

F free.x; t/ D F free
k ei.kxC!t/: (4.2)

Noting that here a ´ U1t (though for general, spatially varying U a trajectory equation
would need to be solved for a), this gives

E D
1 ¡ ¯1t.1 ¡ »2/ ¡ i®1t.1 ¡ »1/

1 C ¯1t»2 C i®1t»1
; (4.3)

where

E ´
F free.x; t C 1t/

F free.x; t/
D ei.!CkU /1t : (4.4)

Given that ® and ¯ > 0 are both real, and that jEj 6 1 for stability, this yields the
conditional stability condition

¡¯1tf1 C ¯1t.»2 ¡ ½/g 6 ®21t2.»1 ¡ ½/: (4.5)

For the implicit case (for which »2 6D 0), (4.5) is easy to satisfy robustly, i.e. inde-
pendently of the values of ®1t and ¯1t > 0, by simply requiring the left (right)-hand
sides to be less (greater) than or equal to zero, thus leading to

»1; »2 > ½: (4.6)

For the explicit case (where »2 ´ 0), (4.5) can be very restrictive, depending upon
the values of the parameters. If ¯ is strictly greater than zero but small compared to j®j,
and »1 < ½, then (4.5) asymptotically reduces to

1t 6
¯

®2.½ ¡ »1/
; (4.7)

thus negating much or all of the time-step advantage of the semi-implicit scheme. This
serious drawback is easily avoided by respecting the condition

»1 > ½: (4.8)

However, there remains another important asymptotic limit, viz. when ®2 is negligibly
small, and then (4.5) reduces to

0 6 ¯1t 6 2: (4.9)
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TABLE 1. DISPERSIO N RELATION (E ) AND STABILITY CRITERION AS A FUNCTION OF COUPLING
SCHEME

Coupling scheme Dispersion relation (E) Robust stability condition(s)

Exact expf¡.i® C ¯/1tg 0 6 ¯1t

Explicit (»2 ´ 0)
1 ¡ ¯1t ¡ i®1t.1 ¡ »1/

1 C i®1t»1
0 6 ¯1t 6 2

Implicit
1 ¡ ¯1t.1 ¡ »2/ ¡ i®1t.1 ¡ »1/

1 C ¯1t»2 C i®1t»1
0 6 ¯1t and »1; »2 > ½

Split-implicit

³
1

1 C ¯1t

´ »
1 ¡ i®1t.1 ¡ »1/

.1 C i®1t»1/

¼
0 6 ¯1t and »1 > ½

Symmetrized split-implicit

»
1 ¡ i®1t.1 ¡ »1/

1 C i®1t»1

¼ »
1 ¡ ¯1t.1 ¡ »2/

1 C ¯1t»2

¼
0 6 ¯1t and »1; »2 > ½

This condition is very restrictive for fast damping processes, such as vertical
diffusion in the boundary layer at high resolution, thus rendering the explicit coupling
computationally inef� cient for practical applications. Indeed, although satisfaction of
(4.9) guarantees stability of the free solution, the solution does not necessarily respect
physical � delity. This is particularly easy to see in the special case where ®1t is
vanishingly small and ¯1t D 2: (4.3) then reduces to E D ¡1 and F free.t/ spuriously
changes sign on alternate time-steps with no damping whatsoever. To avoid this situation
and ensure that the damping rate per time step, jEj, decreases monotonically as the
damping coef� cient, ¯ , increases, it is preferable to satisfy the more restrictive condition

0 6 ¯1t 6 1: (4.10)

The dispersion relations and associated stability conditions for the other coupling
schemes of section 3 may be found in a similar manner to that given above for the
implicit and explicit couplings, and the ensuing results are summarized in Table 1. While
the explicit coupling scheme for the revised canonical problem has a very restrictive
stability condition, the other three share the advantage of being stable independently of
®1t and ¯1t provided the time-weighting parameters are chosen appropriately.

(b) Accuracy
Applying (4.4) to the exact free solution (2.8) leads to

Eexact ´ expfi.!exact C kU/1tg D expf¡.i® C ¯/1tg

D 1 ¡ .i® C ¯/1t C
.i® C ¯/21t2

2
¡

.i® C ¯/31t3

6
C O.1t/4; (4.11)

where
!exact D ¡® ¡ kU C i¯; (4.12)

is the exact value of !.
For the implicit coupling, by expanding (4.3) in terms of 1t, the corresponding

discrete expression is

Eimplicit D 1 ¡ .i® C ¯/1t C .i® C ¯/.i®»1 C ¯»2/1t2

¡.i® C ¯/.i®»1 C ¯»2/21t3 C O.1t/4: (4.13)
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TABLE 2. E ¡ Eexact AS A FUNCTION OF COUPLING SCHEME

Coupling scheme E ¡ Eexact

Explicit

»
i®

³
»1 ¡

1

2

´
¡

¯

2

¼
.i® C ¯/1t2 C O.1t/3

Implicit

»
i®

³
»1 ¡ 1

2

´
C ¯

³
»2 ¡ 1

2

´¼
.i® C ¯/1t2

¡

(

.i®»1 C ¯»2/2 ¡
.i® C ¯/2

6

)

.i® C ¯/1t3 C O.1t/4

Split-implicit

(³
»1 ¡

1

2

´
.i®/2 C

¯2

2

)
1t2 C O.1t/3

Symmetrized split-implicit f.i®/2.»1 ¡ 1
2 / C ¯2.»2 ¡ 1

2 /g1t2 ¡ f.i®/3.» 2
1 ¡ 1

6 / C .i®/2¯.»1 ¡ 1
2 /

Ci®¯2.»2 ¡ 1
2 / C ¯3.» 2

2 ¡ 1
6 /g1t3 C O.1t/4

Thus, for a centred scheme (»1 D »2 D ½), the discrete transient amplitude (4.13) agrees
with the exact one (4.11) to O.1t/2 even when ¯ 6D 0, i.e. in the presence of damping.
Off-centring for the implicit coupling, however, reduces the accuracy to O.1t/, but
negligibly so for negligibly small off-centring. The accuracy of the discrete transient
amplitude (E ¡ Eexact) for the other three coupling schemes may be found in a similar
manner, and the ensuing results are summarized in Table 2.

Examination of Table 2 shows that all couplings have the same formal order of
accuracy, with the discrete transient amplitude agreeing with the exact one to O.1t/.
However, for centred schemes (for which »1 D »2 D ½) and irrespective of the values
of ® and ¯ , the implicit and symmetrized split-implicit couplings are more accurate,
agreeing with the exact transient amplitude to O.1t/2. But centring the explicit and
split-implicit couplings does not increase the formal order of accuracy except for the
special case ¯ D 0, i.e. in the absence of damping. Off-centring formally reduces the
accuracy of the implicit and symmetrized split-implicit couplings, but negligibly so for
small off-centring.

5. THE FORCED NON-RESONANT RESPONSE

(a) Forced response
By analogy with the continuous case, the complete solution of (3.1) is the sum of

the complementary function and a particular integral. The complementary function is
the general solution of the homogeneous equation, i.e. the equation obtained by setting
the forcing coef� cient Rk identically to zero on the right-hand side of (3.1). This is
referred to above as the free solution, and it is given by (4.2), where ! is determined from
(4.3) and (4.4). The particular integral is any solution of the complete inhomogeneous
equation and includes all forcings.

For the implicit coupling, a simple way of obtaining a particular integral of (3.1) is
to seek solutions of the form

F forced.x; t/ D F forced
k ei.kxCÄkt /; (5.1)
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TABLE 3. FORCED NON-RESONANT RESPONSE .F forced
k =Rk / AS A FUNCTION OF

COUPLING SCHEME

Coupling scheme F forced
k =Rk

Exact
1

¯ C i.® C kU C Äk/

Explicit
f»3 C .1 ¡ »3/g1t

.1 C i®1t»1/. ¡ Eexplicit/

Implicit
f»3 C .1 ¡ »3/g1t

.1 C i®1t»1 C ¯1t»2/. ¡ Eimplicit/

Split-implicit
f»3 C .1 ¡ »3/g1t

.1 C ¯1t/. ¡ Esplit-implicit/

Symmetrized split-implicit
[.1 C i®1t»1/»3 C f1 ¡ i®1t.1 ¡ »1/g.1 ¡ »3/]1t

.1 C i®1t»1/.1 C ¯1t»2/. ¡ Essi/

TABLE 4. f¯ C i.® C kU C Äk /g2fF forced
k =Rk ¡ .F forced

k =Rk /exactg AS A FUNCTION OF COUPLING SCHEME

Coupling scheme f¯ C i.® C kU C Äk/g2fF forced
k =Rk ¡ .F forced

k =Rk /exactg

Explicit f.»1 ¡ »3/® C i»3¯ ¡ .»3 ¡ ½/.kU C Äk /g.kU C Äk/1t C O.1t2/

Implicit f.»1 ¡ »3/® C i.»3 ¡ »2/¯ ¡ .»3 ¡ ½/.kU C Äk /g.kU C Äk/1t C O.1t2/

Split implicit [¡f»1® C »3.kU C Äk/g® C fi.»3¡1/¯ ¡ .»3¡½/.kU C Äk /g.kU C Äk /]1t

CO.1t2/

Symmetrized split-implicit ¡[f.»1 C »3 ¡ 1/® C i.»2 ¡ »3/¯ C 2.»3 ¡ ½/.kU C Äk /g®
Cfi.»3 ¡ »2/¯ ¡ .»3 ¡ ½/.kU C Äk/g.kU C Äk /]1t C O.1t2/

and to then determine F forced
k . Thus

.F forced
k /implicit D

µ
f»3 C .1 ¡ »3/g1t

.1 C i®1t»1 C ¯1t»2/ ¡ f1¡i®1t.1¡»1/¡¯1t.1¡»2/g

¶
Rk

D
µ

f»3 C .1 ¡ »3/g1t

.1 C i®1t»1 C ¯1t»2/. ¡ Eimplicit/

¶
Rk; (5.2)

where
D ei.ÄkCkU /1t ; (5.3)

®1t and ¯1t are non-dimensional parameters, Eimplicit is given by (4.3), and (5.1) and
(5.2) are valid provided the denominator in (5.2) is non-zero. The singular (resonant)
case is analysed in section 6. The forced non-resonant response for the other three
coupling schemes of section 3 may be found in a similar manner and results for
F forced

k =Rk are summarized in Table 3, where Ecoupling scheme is de� ned by the middle
column of Table 1.

The difference of the discrete forced non-resonant response F forced
k

=Rk from the
exact one, (2.10) and (2.11), normalized for convenience by f¯ C i.® C kU C Äk/g¡2,
has been derived from Table 3 and is displayed in Table 4 as a function of coupling
scheme. Examination of this table shows that all couplings have the same formal order
of accuracy, with the discrete amplitude agreeing with the exact one to O.1t/. However,
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for centred schemes (for which »j D ½) and irrespective of the values of ® and ¯ , the
implicit and symmetrized split-implicit couplings are more accurate and then agree with
the exact result to O.1t2/. But centring the explicit and split-implicit couplings does
not increase the formal order of accuracy when ¯ > 0, i.e. in the presence of damping.
Even when ¯ D 0, centring the split-implicit scheme still does not make it second-order
accurate. Off-centring formally reduces the accuracy of the implicit and symmetrized
split-implicit couplings, but negligibly so for small off-centring.

(b) Steady-state response
If k ´ 0 and Äk ´ 0, i.e. the forcing is constant (as in the simpler canonical problem

of CLZ98), then, � rstly, ´ 1, secondly, a forced steady-state response exists provided
either (2.23) or (2.24) holds, and, thirdly, (5.1) reduces to the exact result (2.21) (with
k D 0) regardless of the precise values of the off-centring parameters »1, »2 and »3. These
results also hold for the explicit coupling since it is the special case of the implicit
coupling where »2 ´ 0. For the split-implicit coupling-scheme, however, this is not the
case, nor is it for the symmetrized split-implicit coupling-scheme unless the scheme is
centred.

For the split-implicit scheme, substitution of k ´ 0, Äk ´ 0, ´ 1 and for
Esplit-implicit from Table 1 into the split-implicit expression given in Table 3 yields

.F forced
0 /split-implicit D

R0

i®=.1 C i®1t»1/ C ¯
: (5.4)

Thus for the split-implicit coupling, consistent with the corresponding situation for the
simpler canonical problem examined by CLZ98 (where ¯ ´ 0), the constant forced
component of the � ow (5.4) no longer corresponds to the exact result (2.21). Consider
now the ratio


.F forced

0 /split-implicit

.F forced
0 /exact



2

D
.1 C ®21t2»2

1 /f.®1t/2 C .¯1t/2g
.®1t/2.1 C ¯1t»1/2 C .¯1t/2

; (5.5)

i.e. the squared amplitude of the ratio of approximate to exact results. From (5.5) it
can be seen that j.F forced

0 /split-implicit=.F forced
0 /exactj is less than or greater than unity

according to whether ¯1t is greater or less than the critical value »1.®1t/2=2. As
noted by CLZ98 for the special case where there is no damping (i.e. ¯ ´ 0), the forced
response can be spuriously ampli� ed by an order of magnitude. However, it is seen
from (5.5) that a suf� ciently large damping can inhibit the spurious ampli� cation of the
constant forced component of the � ow or, even, spuriously diminish such forcing. The
impact of off-centring the time-discretization of the semi-implicit terms is to increase
the threshold at which strong damping diminishes the amplitude of the constant forced
component.

For the symmetrized split-implicit scheme, substitution of k ´ 0, Äk ´ 0, ´ 1
and for Essi from Table 1 into the symmetrized split-implicit expression given in Table 3
yields

.F forced
0 /ssi D

f1 C i®1t.»1 C »3 ¡ 1/gR01t

i®1tf1 C .»1 C »2 ¡ 1/¯1tg C ¯1t
: (5.6)

For general »1, »2 and »3 this does not correspond to the exact result (2.21) (with k D 0).
It does, however, do so if

»1 C »2 D »1 C »3 D 1; i.e. »2 D »3 D 1 ¡ »1; (5.7)
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and these are the conditions that the symmetrized split-implicit time-weights must
satisfy in order to obtain the exact steady-state for constant forcing. This, coupled with
the requirement that »1; »2 > ½ for robust stability (Table 1), means that »1 D »2 D ½
is required in order to capture the exact steady-state for constant forcing, and a small
decentring of the time-weights slightly perturbs the discrete steady-state away from the
exact one.

6. THE FORCED RESONANT RESPONSE

For the implicit coupling, if the denominator of (5.2) is zero, i.e. if

´ ei.ÄkCkU /1t D Eimplicit D
1 ¡ ¯1t.1 ¡ »2/ ¡ i®1t.1 ¡ »1/

1 C ¯1t»2 C i®1t»1
; (6.1)

then the solution is singular and resonant. This provides a constraint, for resonance to
occur, on the six non-dimensional parameters, »1, »2, ®1t , ¯1t, W and KC where

W ´ Äk1t; K ´ k1x; C ´
U1t

1x
: (6.2)

Since .Äk C kU/1t is real, resonance is only possible if the parameters are such that
the right-hand side of (6.1) lies on the unit circle in the complex plane, i.e.

jEimplicitj2 D
f1 ¡ ¯1t.1 ¡ »2/g2 C ®21t2.1 ¡ »1/2

.1 C ¯1t»2/2 C ®21t2»2
1

D 1: (6.3)

Satisfaction of (6.3) is a necessary but insuf� cient condition for resonance. It con-
trains the magnitude of Eimplicit but not its phase. Resonance, real or spurious, can only
occur if (6.1) is also simultaneously satis� ed. Here, W C KC ´ .Äk C kU/1t is con-
strained by

0 6 K; jW j 6 ¼; (6.4)

in order for the forcing to be properly sampled and resolved in both space and time—
any higher non-dimensionalized wavelength or forcing frequency would be aliased
and indistinguishable from a wavelength or frequency satisfying these contraints, and
the discretization would behave in exactly the same manner as that for the aliased
wavelength or frequency.

Recall that ¯1t > 0 and that for robust stability reasons—see text preceding
(4.6)—the off-centring parameters »1 and »2 are constrained to be >½. Inspection of
(6.3) shows that for »1; »2 > ½, it can only be satis� ed if ¯1t D 0 and additionally
either ®1t D 0 or »1 D ½. Consequently, resonance can only occur if ¯1t D 0 and
additionally either ®1t D 0 or »1 D ½, and it is suppressed if »1 > ½ and ®1t 6D 0.

Similarly, necessary resonance conditions for the other coupling schemes of sec-
tion 3 may be found by setting the denominators in Table 3 to zero. They all have the
form of (6.3), i.e. jEcoupling schemej2 D 1, and jEcoupling schemej2 is displayed in Table 5 as
a function of coupling scheme.

Setting jEcoupling schemej2 of Table 5 to unity (a necessary condition for resonance to
occur), it can be shown that all coupling schemes lead to the same necessary conditions
for resonance as the implicit coupling. Thus, in summary, for all four schemes there
are only two possible ways for resonance to occur: (a) if ®1t D ¯1t D 0 and (b) if
¯1t D 0 and »1 D ½. For all four schemes it turns out that inserting these conditions
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TABLE 5. jEj2 AS A FUNCTION OF COUPLING SCHEME

Coupling scheme jEcoupling scheme j2

Explicit
.1 ¡ ¯1t/2 C ®21t2.1 ¡ »1/2

1 C ®21t2» 2
1

Implicit
f1 ¡ ¯1t.1 ¡ »2/g2 C ®21t2.1 ¡ »1/2

.1 C ¯1t»2/2 C ®21t2» 2
1

Split-implicit
1 C ®21t2.1 ¡ »1/2

.1 C ¯1t/2.1 C ®21t2» 2
1 /

Symmetrized split-implicit

»
1 ¡ ¯1t.1 ¡ »2/

1 C ¯1t»2

¼ 2
(

1 C ®21t2.1 ¡ »1/2

1 C ®21t2» 2
1

)

into the appropriate analogues of (6.1) leads to the same expressions for , viz.

´ ei.W CKC/ D 1; (6.5)

for case (a), and

´ ei.W CKC/ D
1 ¡ i®1t=2

1 C i®1t=2
; (6.6)

for case (b). These two cases are now examined in detail.

(i) Case (a), ®1t D ¯1t D 0. From (6.5) resonance occurs, independently of the
precise value of the off-centring parameters »1 and »2, when

W C KC ´ .Äk C kU/1t D 2n¼; n D 0; §1; §2; : : : : (6.7)

When n D 0 this agrees with the exact condition (2.13) for physical resonance. However,
spurious resonance occurs when n D §1; §2; : : : .

Since, from (6.7),

maxjW; Kj ´ maxjÄk1t; k1xj 6 ¼; (6.8)

these spurious resonances can be avoided by taking the time step such that

C ´
U1t

1x
< 1: (6.9)

From (6.7), for stationary forcing (i.e. W ´ 0), C < 2 is suf� cient to suppress them.
Thus (6.9), for time-dependent forcing, is twice as restrictive a condition as the corre-
sponding one for stationary forcing.

These spurious resonances can alternatively be removed by damping, and this can
be either explicit damping with a strictly-positive value of ¯ , or implicit damping due
to interpolation (see section 7). They cannot, however, be removed by off-centring since
(6.7) is insensitive to any variation in the off-centring parameters.

(ii) Case (b), »1 D 1
2 , ¯1t D 0. Solving (6.6) for .W C KC/ and simplifying, gives

the result that resonance occurs if

cos.W C KC/ D
1 ¡ .®1t=2/2

1 C .®1t=2/2
; and sin.W C KC/ D

¡2.®1t=2/

1 C .®1t=2/2
: (6.10)
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These conditions can be combined to give the necessary requirement

tan

»
.Äk C kU/1t

2

¼
´ tan

³
W C KC

2

´
D

¡®1t

2
D ¡

³
®

Äk C kU

´ ³
W C KC

2

´
;

(6.11)
but care must then be exercised to select valid solutions. This is because not all solutions
of (6.11) are necessarily solutions of (6.10). (The usual loss of phase information
when condensing the real and imaginary parts of the polar representation into a single
expression for the tangent of the angle introduces spurious solutions.) Consequently,
(6.10) must normally be used to select the proper quadrant in the complex plane and
remove any ambiguity. This is not, however, necessary in the present context since ®

and f1 ¡ .®1t=2/2g can take either sign, and therefore, from (6.10), expfi.W C KC/g
can be in any quadrant.

If W D ¡KC, then ® D 0 from (6.10) and this solution corresponds to a special case
of physical resonance (cf. (2.13)). If, however, .W C KC/ 6D 0, graphical consideration
of (6.11), i.e. plotting the left- and right-hand sides as functions of .W C KC/=2, shows
that other resonant solutions exist. Noting that ® can take either sign and that the slope
of tan x at the origin is unity, we see there are two regimes.

(ii.a) 0 6 j.W C KC/=2j < ¼=2 (physical resonance). For j®=.Äk C kU/j > 1
(see Fig. 1) and bearing in mind that ® can be of either sign, there are two reso-
nances, with each associated ® being of opposite sign to Äk C kU . Expanding (6.11)
for small 1t shows that these solutions correspond to physical resonance since they
then approximate the exact result ® C kU C Äk D 0, ¯ D 0, cf. (2.13). As 1t is in-
creased, the two resonances still approximate the physical ones, albeit with diminish-
ing accuracy, and the discrete resonant forcing frequency is larger in magnitude than
the analytic one. For the limiting case j®j D .Äk C kU/ (see limiting line of Fig. 1),
where y D tanf.W C KC/=2g is tangent to y D j®=.Äk C kU/jf.W C KC/=2g at the
origin, the two physical resonances coalesce into the single physical resonance when
® D ¡.kU C Äk/ D 0. For j®=.Äk C kU/j < 1 (see Fig. 2), no resonance occurs for
0 < j.W C KC/=2j < ¼=2.

(ii.b) j.W C KC/=2j > ¼=2 (spurious resonance). In this regime (see Figs. 1, 2),
noting that ® can be of either sign, resonances occur when

.Äk C kU/1t

2
´

.W C KC/

2
¼ §

¼

2
; §

3¼

2
; : : : ; (6.12)

where K and W are constrained to satisfy (6.8). These resonances are all spurious. For a
stationary orographic forcing .)W D 0/, these spurious resonances can be avoided, as
noted by Rivest et al. (1994), by taking a suf� ciently small time-step such that

C ´
U1t

1x
< 1: (6.13)

For time-dependent forcings such that W ´ Äk1t 6D 0; ¼ , they can still in principle be
avoided by taking a suf� ciently-small time-step. However, this time step becomes very
small indeed as W approaches ¼ and becomes excessively restrictive. These spurious
resonances can be avoided by satisfying

»1 > ½; (6.14)

as noted above, but this has the unfortunate consequence that physical resonance is also
spuriously suppressed.
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Figure 1. Schematic for solutions of (6.11) when j®=.Äk C kU/j > 1. Resonance occurs at intersections of
y D tanf.W C KC/=2g and y D §f®=.Äk C kU/gf.W C KC/=2g. The limiting line y D .W C KC/=2 is plotted

for reference.

Figure 2. As in Fig. 1 except for j®=.Äk C kU/j < 1.
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7. EFFECTS OF DAMPING DUE TO INTERPOLATION

The damping due to interpolation can be incorporated into the analysis by introduc-
ing the response function ½ of the adopted interpolator (see e.g. Bates and McDonald
(1982) and Gravel et al. (1993) for further details of interpolation response functions and
their use). This is achieved by formally multiplying all the terms evaluated at upstream
points .x ¡ a/ in the discretized equations of section 3 by ½ , and then carrying them
through in the analysis. Exact interpolation corresponds to setting ½ equal to unity but, in
general, j½j < 1 and interpolation gives rise to damping. This damping, e.g. with cubic
interpolation, is usually negligible for large and medium scales but becomes progres-
sively stronger at decreasingly small scale. To facilitate insight and to keep the analysis
tractable, the damping effect of interpolation has been neglected in all the above analysis
by assuming ½ ´ 1, i.e. perfect interpolation. However, some comments are now made
regarding the impact that the incorporation of the damping induced by interpolation has
on both the above analysis and on the conclusions drawn therefrom.

For the stability and accuracy analysis of section 4, the discrete dispersion relations
given in column 2 of Table 1 are all multiplied by ½. Because j½j 6 1, this enhances sta-
bility since it serves to reduce jEj and to make it easier to achieve stability, particularly
at small scales where discrete schemes are often most unstable and where the effect of
damping is strongest. The effect on accuracy is to introduce terms of O.1xm/ where
m is determined by the order of accuracy of the adopted interpolator.

For the forced non-resonant response, discussed in section 5, (5.2) for the implicit
coupling becomes

.F forced
k /implicit D

f»3 C .1 ¡ »3/½g1tRk

.1 C i®1t»1 C ¯1t»2/ ¡ f1 ¡ i®1t.1 ¡ »1/ ¡ ¯1t.1 ¡ »2/g½
:

(7.1)
The analogous expressions for the other couplings may be obtained from Table 3 by
formally dividing wherever it appears by the interpolation response function ½, and by
then multiplying both the numerator and denominator by ½ to avoid its possibly singular
behaviour (e.g. at the smallest resolvable scale where it might be zero). The effect on
accuracy is to introduce terms of O.1xm/, where m is determined by the order of
accuracy of the adopted interpolator, into the truncation errors displayed in Table 4
and the exact steady-state solution is then no longer exactly recovered for any of the
coupling schemes.

For the forced resonant response analysis of section 6, the right-hand sides of (6.1)
and (6.3) are respectively multiplied by ½ and ½2. The consequence is that if j½j < 1,
i.e. the interpolation is not exact (the case of exact interpolation, when ½ D 1, has already
been considered in section 6), then this is suf� cient to suppress resonance since the right-
hand side of (6.3) can no longer be on the unit circle when the off-centring parameters
obey the robust stability constraint (4.6). A similar reasoning applied to the analogous
relations for the other couplings leads to the same conclusion.

8. SUMMARY AND CONCLUSION

A framework for examining the numerics of physics–dynamics coupling has been
presented. To illustrate the usefulness of this methodology, four couplings have been
analysed in the framework of a semi-implicit semi-Lagrangian dynamical core and
compared under the assumption, for the most part, that the associated interpolations
are performed exactly.
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The explicit coupling has the advantages of simplicity (this is particularly attractive
in a full model where the highly nonlinear physics terms can be ef� ciently evaluated
in an explicit manner) and correct representation of the exact steady-state solution for
constant forcing. However, it suffers from the important disadvantage that the time
step is limited by both the stability condition (4.7), which is very restrictive for fast
processes such as vertical diffusion of the boundary layer at high resolution, and the
O.1t/ discretization of the ¡¯F damping term.

The implicit coupling addresses the stability issue of the explicit coupling while
still correctly representing the exact steady-state solution for constant forcing, but has
the disadvantage that the simultaneous implicit coupling of the physics and dynamics
leads to a highly nonlinear and computationally dif� cult and expensive problem to solve.

The split-implicit coupling is a dynamics predictor followed by a physics corrector.
It addresses the stability issue of the explicit coupling while keeping the physics
discretization distinct from the dynamics discretization but, as argued by CLZ98, it does
so at the expense of accuracy—one O.1t/ discretization has effectively been replaced
by another, and the resulting truncation error is still large for large 1t. In particular, the
split-implicit coupling corrupts the steady-state solution and the forced response can,
as identi� ed by CLZ98, be spuriously ampli� ed by an order of magnitude. However,
a strong time-implicitly treated damping mechanism, such as vertical diffusion, can
signi� cantly decrease the seriousness of this latter problem to the point of even under-
estimating the forced response.

The symmetrized split-implicit coupling is composed of two physics discretiza-
tions symmetrically arranged around a dynamics sub-step. It addresses the stability and
accuracy de� ciencies of the explicit coupling while still correctly representing the ex-
act steady-state solution for constant forcing, and it also has the virtue of keeping the
physics discretization distinct from the dynamics one. It partially shares the disadvan-
tage of the implicit coupling inasmuch as the second physics sub-step is an implicit
discretization of the highly nonlinear physics. However, the usual column-based physi-
cal parametrizations are such that the discrete set of nonlinear equations can be solved
column by column, i.e. the nonlinearity appears only in the vertical direction rather than
in all three directions simultaneously as it does for the implicit coupling.

Stationary spatial forcing, such as that caused by orography, can lead to spurious
computational resonance. The analysis presented here considers the impact of a time-
dependent spatial forcing. It is found that this too can lead to spurious computational
resonance. Further, in the absence of any controlling mechanism, such as discussed
below, this resonance can be avoided only by placing a restriction on the time step which
is twice as restrictive as that needed to avoid spurious resonance caused by stationary
forcing.

For all the examined couplings, spurious computational resonance can occur when
»1 D ½, i.e. for a centred discretization of the semi-implicitly treated terms, or when
®1t D 0. In both cases, for time-dependent forcing, i.e. Äk 6D 0, resonance can be
avoided by setting 0 < ¯1t < 2, i.e. by applying some diffusion. Decentring the semi-
implicitly treated terms, i.e. by setting »1 > ½, removes the possibility of resonance
when ®1t 6D 0. However, this has the unfortunate consequence of spuriously inhibiting
physical resonance, when it exists. For the special case of stationary forcing, respect
of the Courant condition (6.13) suppresses spurious resonance when »1 D ½ while still
capturing physical resonance.

The incorporation of the damping due to the interpolation associated with semi-
implicit semi-Lagrangian discretizations was also considered. The impact of interpo-
lation is for the most part minor: it introduces a spatial truncation error, whose order
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is determined by the order of the interpolation error, and this introduces a damping,
which is negligible at large and medium spatial scales but which can be important at
small spatial scale; computational stability is enhanced, particularly at small spatial
scale. Arguably, the most important impact of interpolation is that, in addition to the
real resonance, it inhibits spurious computational resonance, and reduces the need for
explicit damping and off-centring, two alternative ways of controlling this.

The presented framework for examining the numerics of physics–dynamics cou-
pling is fairly general and could be adapted for other applications. A current thrust of
4-D variational data assimilation (Janisková et al. 1999b) is to include a simpli� ed linear
physics package (Janisková et al. 1999a) into the tangent linear and adjoint models used
in the incremental variational formulation. The numerical analysis framework presented
here could be adapted to examine relevant issues for this, such as the possibility that spe-
ci� c physics–dynamics couplings could lead to the introduction of a systematic bias into
the data assimilation procedure. Gordon et al. (2000) showed that the poor circulation
in the ocean component of an early version of the Hadley Centre’s coupled climate-
model led to a spurious climate-drift, and that this had to be controlled by a � ux adjust-
ment procedure to obtain a realistic simulated climate. It is possible that the numerics
of atmosphere–ocean couplings might also give rise to a small but nevertheless non-
negligible climate-drift. The present analysis could perhaps be adapted to provide some
insight into whether this is likely or not. Finally, a further possible application would be
to examine the impact of incorporating the physics as a sequence of predictor–corrector
steps of physical sub-processes (turbulent diffusion, surface exchanges, clouds, radi-
ation, convection etc.), and the order of doing so, versus a simultaneous evaluation of
all process tendencies using the same atmospheric state.

REFERENCES

Bates, J. R. and McDonald, A. 1982 Multiply-upstream, semi-Lagrangian advective schemes: analysis
and application to a multi-level primitive equation model.
Mon. Weather Rev., 110, 1831–1842

Caya, A., Laprise, R. and Zwack, P. 1998 Consequences of using the splitting method for implementing
physical forcings in a semi-implicit semi-Lagrangian model.
Mon. Weather Rev., 126, 1707–1713
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