
Journal of Strategic Information Systems 16 (2007) 236–253

www.elsevier.com/locate/jsis
The open source software phenomenon:
Characteristics that promote research q

Georg von Krogh *, Sebastian Spaeth

ETH Zurich, Department of Management, Technology, and Economics, Kreuzplatz 5, 8032 Zurich, Switzerland

Accepted 21 June 2007
Available online 13 August 2007
Abstract

Since the turn of the century, open source software has triggered a vast volume of research. In this
essay, based on a brief review of selected work, we show that research in many different fields and
disciplines of the social sciences have shed light on the phenomenon. We argue that five character-
istics make the phenomenon particularly attractive to examination from various fields and disci-
plines using a plethora of research methods: (1) impact: open source software has an extensive
impact on the economy and society; (2) theoretical tension: the phenomenon deviates sharply from
the predictions and explanations of existing theory in different fields; (3) transparency: open source
software has offered researchers an unprecedented access to data; (4) communal reflexivity: the com-
munity of open source software developers frequently engage in a dialog on its functioning (it also
has its own research community); (5) proximity: the innovation process in open source software
resembles knowledge production in science (in many instances, open source software is an output
of research processes). These five characteristics also promote a transdisciplinary research dialog.
Based on the experience of open source software research, we propose that phenomena-driven trans-
disciplinary research provides an excellent context to promote greater dialog between disciplines and
fields. Moreover, we propose that the recent diffusion of the open source software model of innova-
tion to other areas than software calls for new research and that the field of information systems has
an important role to play in this future research agenda.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Open source software; Interdisciplinary research; Innovation
0963-8687/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.jsis.2007.06.001

q This research was supported by the Swiss National Science Foundation (grant # 100012-101805).
* Corresponding author. Tel.: +41 44 632 88 50.

E-mail address: gvkrogh@ethz.ch (G. von Krogh).

mailto:gvkrogh@ethz.ch


G. von Krogh, S. Spaeth / Journal of Strategic Information Systems 16 (2007) 236–253 237
1. Introduction

Open source software has two distinct features. First, open source software comes
equipped with licenses that provide existing and future users the right to use, inspect, mod-
ify, and distribute modified and unmodified software to others (Raymond, 1999). With
such open licenses, the software products aim at several market segments, covering oper-
ating systems, middleware, and end-user products, such as media players, office suites, and
games. Over the last 15 years, many open source software products have made successful
inroads into these segments attracting many millions of users. For example, in 2005,
Apache achieved a 60% market share for web server software (Netcraft, 2007). In the same
year, Firefox, the browser, achieved a 13% market share (Jano, 2006) and turned over
more than 50 Million USD for the Mozilla foundation that markets and coordinates its
development. Thus, business models around software development are changing and the
deployment of open source solutions is a viable alternative for IT managers.

Second, while software can be classified as ‘‘open source’’ independently of how it was
developed (it is sufficient for the software to be released with an open source license
affixed), years of development have given rise to a new practice of innovation associated
with open source software. Today, projects display a very distinct development process.
Open source software projects are typically initiated by a ‘‘project leader’’ or ‘‘project
entrepreneur.’’ Depending on their interest in the project, volunteers (or companies) join
in and contribute to designing, writing, testing, debugging, distributing, and documenting
the software. Depending on their knowledge, these voluntary ‘‘project contributors’’ per-
form tasks ranging from cheering, via administration and coordination, to technical devel-
opment. Popular projects such as Linux or Azureus may receive the support of several
thousand contributors who emerge from a much larger group of users. These contributors,
in turn, provide feedback to the open source software developers, share their ideas, report
software bugs, indicate new opportunities for using the software, etc. (Raymond, 1999;
Lerner and Tirole, 2002; von Krogh and von Hippel, 2003). This highlights a change in
the nature of how software architecture is created in an evolutionary manner rather than
in a pure top-down planned style as advocated by many (e.g., Brooks, 1995).

Over the last decade, paralleling the growth in markets for open source software, stud-
ies of the open source software phenomenon have proliferated in the social sciences. Goo-
gle Scholar lists more than a thousand papers using the keywords ‘‘open source software’’
and ‘‘social science.’’ In the social science citation index, out of 198 papers that have ‘‘open
source software’’ registered as a keyword (717 when using just ‘‘open source’’), roughly
75% have been published within the last 3 years. Several key journals in various fields have
published special issues related to open source software, gathering focal contributions.

Research on open source software has surfaced in many disciplines and fields of the
social sciences, ranging from economists over computer scientists to anthropologists,
investigating various aspects of the phenomenon using a plethora of research methods.
The field of information systems thrives on and contributes to ‘‘trans-disciplinary’’
research. According to Bob Galliers, the combination of technical, social, and human fac-
tors that impact on the performance of information systems requires an open and frequent
exchange amongst researchers working in various areas and disciplines (Galliers, 2003).
For the field of information systems, the open source phenomenon, thus, represents an
unprecedented opportunity for such a trans-disciplinary dialog. One main question is
(1) why the phenomenon has promoted this large amount of research and in the process



238 G. von Krogh, S. Spaeth / Journal of Strategic Information Systems 16 (2007) 236–253
(2) evoked the interest of researchers working in several disciplines and fields of the social
science contributing to the field of information systems? This essay attempts to address
these two questions by analyzing the open source phenomenon and proposes specific char-
acteristics that promote extensive and trans-disciplinary research. The intention is to iden-
tify some ‘‘lessons learned’’ about the phenomenon and highlight new research
opportunities. This is particularly important since the open source model of innovation
is diffusing into other fields and industries including technical design, pharmaceuticals,
biotechnology, cultural goods, etc.

The paper is organized as follows. In the next section, we briefly review three research
streams and show that researchers from various fields and disciplines have contributed
insights to these shared research questions. In Section 3, we analyze in more detail the
open source software phenomenon and propose five characteristics that have led to the
proliferation of multi-disciplinary research. These are impact, theoretical tension, trans-
parency, communal reflexivity, and proximity. In Section 4, we conclude the paper with
a call for new transdisciplinary research on information systems as it applies to the diffu-
sion of the open source model of innovation to new fields.

2. Open source software: A fertile phenomenon for research and trans-disciplinary dialog

There are a number of research areas that are emerging surrounding the phenomenon
of open source software. However, for the sake of simplicity and clarity, we classify
research according to three major streams (von Krogh and von Hippel, 2006): developer
motivation; governance, organization, and innovation process; and competitive dynamics.
Each of these streams poses its own set of research questions that are shared by researchers
from all fields and disciplines. We demonstrate this trans-disciplinarity through a brief
review of relevant work in each stream.

First, a large amount of research has been devoted to the question: why do developers
contribute to open source software? This problem is not trivial. Due to its particular
license, open source software is a public good; meaning that, first, that no one can be pre-
vented from using the software and, second, the users’ utility from the software is indepen-
dent. The latter is a consequence of open source software being information with
negligible distribution costs. Any developer could choose to invest in (or develop) com-
mercial software using a regime of intellectual property rights to appropriate returns from
this investment, rather than contributing to open source software where the intellectual
property rights guarantee free application and distribution to current and future users
of the product. Due to its public good nature, any potential developer can wait to contrib-
ute until someone else has developed the software. The latter is frequently referred to as
the ‘‘free-rider’’ problem and leads to under-supply of public goods (Olson, 1965). Yet,
the enormous growth and popularity of the open source software shows that the founders
of open source projects, so-called ‘‘project entrepreneurs’’, and other developers were per-
fectly capable of solving this problem.

Economists found this puzzle interesting. For example, in their pioneering work, Lerner
and Tirole (2002) using economic theory suggested that developers contribute in order to
increase their labor market value. By writing and sharing high-quality software in the pub-
lic domain, developers could signal to current and prospective employers their level of
skills and, thereby, increase their salaries and advance their careers. Other economists such
as Dalle and David (2003) concurred, but these authors added that the signaling incentive



G. von Krogh, S. Spaeth / Journal of Strategic Information Systems 16 (2007) 236–253 239
was only available to a few developers who worked on technically important and sophis-
ticated modules and to those project entrepreneurs who initiated important and popular
projects. Combining theories from economics and sociology, von Hippel and von Krogh
(2003) developed a ‘‘private-collective’’ model of innovation incentives. They suggested
that developers contribute to a public good innovation because they garner private bene-
fits related to the innovation process. These benefits, including fun, reputation, learning,
enjoyment, and peer recognition, are not supplied to the same degree to non-contributors.

Psychologists shared this research question and quickly advanced an important
research agenda that covered a broad range of motives. The conjecture was that commu-
nity participation, social motives, and norms relate to levels of contribution individual
developers and other contributors make to open source software projects. For example,
in an early survey study, Hertel et al. (2003) found that Linux developers were motivated
by the need to improve the product for their own use. They also identified with the larger
‘‘community of Linux developers’’ and were, thus, motivated by group-related factors,
such as their ‘‘perceived indispensability’’ for the group in which they work. Bagozzi
and Dholakia (2006), using a survey design, found that participants in Linux User Groups
(technical support groups) were motivated by a combination of social and sychological
factors. ‘‘We-intentions’’ were important for predicting individual actions that contribute
to group-level actions.

In the discipline of cultural anthropology, Zeitlyn (2003) pointed out that we need to
better understand the culture of the open source software movement and the correspond-
ing social norms that regulate people’s behavior. Due to the social norm of reciprocity,
developers are motivated to give ‘‘gifts’’ to the project in the form of software patches,
comments, bug fixes, and so on (Raymond, 1999; Bergquist and Ljungberg, 2001). How-
ever, Zeitlyn’s advice was for the cultural studies of the open source software phenomenon
to focus more broadly on complementary social norms, including ‘‘familiarity’’ and ‘‘kin-
ship’’ amongst contributors in projects, as important for motivating contributions.

Researchers in the field of management and organization studies (broadly covering
technology and innovation management, management information systems, management
and organization theory, organization behavior, etc.) also found the puzzle of developer-
and contributor-motivation interesting. For example, gathering and analyzing data from
the Apache project, Roberts et al. (2006) asked if employment in firms matters for devel-
opers’ levels of contributions. These authors observed that developers attain very different
status levels in the open source software projects, and that mixed motives relate to the
highest levels of contribution. People are motivated both by attainment of status in the
Apache project and paid participation (firm employment). Developing a new survey
instrument, Franke and von Hippel (2003) studied user satisfaction in Apache security
software. They found that developers who were capable of changing the software to fit
their own needs were significantly more satisfied than those who could not adapt the prod-
uct. This evidence indicated that the technical design of open source software relates to
developer motivation and prepared the ground for other researchers such as Baldwin
and Clark (2006) to investigate the relationship between design and motivation. They
developed a game-theoretic model that takes into account the extent to which a software
architecture is ‘‘modular.’’ Their analysis showed that developers have less incentive to
‘‘free-ride’’ upon open source software with a modular architecture.

Spurred by a compelling and simple research question, a matrix of research has
emerged that helps shed considerable light on the open source phenomenon. This matrix



240 G. von Krogh, S. Spaeth / Journal of Strategic Information Systems 16 (2007) 236–253
is enabled by researchers pursuing a trans-disciplinary dialog. While they conduct their
disciplinary research and make contributions within the methodological tradition of each
discipline, there is also an extensive and continuous referencing of the work by researchers
in other disciplines.1 As we will argue later, this research matrix also fuels a debate within
the practice of open source software development.

While the study of individual motivations clearly represents the most straightforward
example of a trans-disciplinary dialog, there are also clear instances in the two remaining
research streams. In governance, organization, and innovation process, research uncov-
ered that contributors’ distributed and diverse interests as well as their different capabili-
ties make them participate with different intensity in various parts of the innovation
process (e.g., Nonnecke and Preece, 2003; see also Franck and Jungwirth, 2003; Koch
and Schneider, 2002; O’Mahony, 2003). In the field of legal studies, Benkler (2002) argued
that open source software represents a form of ‘‘commons-based peer production.’’ Such a
form of production uses other governance mechanisms than the ‘‘market’’ or the ‘‘firm.’’
In the field of management and organization studies, scholars analyzed in more detail the
nature of the open source software development process and argued that open source soft-
ware projects have developed a way of governing very distributed participation where peo-
ple can pursue their diverse interests. This happens without the software product
‘‘forking’’ into new and ‘‘unofficial’’ versions (Kogut and Metiu, 2001; see also Demil
and Lecocq, 2006). If forking were common practice, projects developing different versions
of the product would compete for scarce developer resources, create confusion in the mar-
ket, create incompatible versions on users’ computers, etc. Forking could potentially
threaten the sustainability and the quality of the software product. The open source soft-
ware projects’ ability to ‘‘govern’’ the development process relate to role differences in pro-
jects. While many people can contribute in various ways to open source software (giving
advice, identifying and solving bugs, etc.), technical development is typically restricted to a
much smaller group of ‘‘developers’’ who also decide on the design of the software prod-
uct. This layered model of organization of open source software development can be
thought of as an ‘‘onion’’ with layers of bug fixers, bug reporters, occasional participants
in email subscription lists, etc. with each layer being more distant from the project’s devel-
oper core (Crowston and Howison, 2006). Moving from being a ‘‘peripheral’’ contributor
to becoming a developer may be costly for the individual (von Krogh et al., 2003). More-
over, Kuk (2006) found that this change in the status of contributors also coincides with
various forms of strategic interactions amongst a few participants who are knowledgeable
about the software and resourceful in other ways (Kuk, 2006).

Sociologists shared this interest in the status of open source software contributors and
developers. In particular, the open source software phenomenon provided data from a
natural setting related to various circumstances that lead to the generation of status
orders. In the process of status attainment, research identified that open source software
developers tended to evaluate a focal actor reputation according to publicly available
social references. These references emerge as part of the innovation process itself (Stewart,
2005).

Due to the public good nature of open source software, the research stream on compet-
itive dynamics posed an important research question shared across disciplines and fields:
1 The reference list of the contributions reviewed indicates cross-referencing.



G. von Krogh, S. Spaeth / Journal of Strategic Information Systems 16 (2007) 236–253 241
how do firms compete (or collaborate) with ‘‘free?’’ In particular, as open source software
gains ground in the market, what impact will it have on commercial software? In econom-
ics, early work on this topic concluded that both commercial software and open source
software would continue to coexist, but that open source software would impact the com-
mercial software vendor’s strategy (Bonaccorsi and Rossi, 2003; Mustonen, 2003). More
recently, authors such as Casadesus-Masanell and Ghemawat (2006) and Economides
and Katsamakas (2006) have developed in more detail how open source software would
change the commercial firm’s pricing and the choice of a technological platform (soft-
ware/hardware). The research question also spurred inquiry in the field of management
and organization studies. For example, West (2003) discussed advantages and disadvan-
tages of different strategies and technological platforms pursued by firms. Dahlander
and Magnusson (2005), in turn, analyzed how software firms in Scandinavia collaborate
and build relationships with communities of volunteer software developers.

To summarize, research originating in various disciplines has shed considerable light on
the open source software phenomenon. This work shared some research questions that
must be seen as a precondition for a fruitful trans-disciplinary dialog amongst researchers
and, thereby, a proliferation of research. Without this dialog, partial views and models
would still have dominated our understanding of the open source software phenomenon.
For example, while early pioneering economic theory suggested some developers are moti-
vated by career incentives, research in psychology, sociology, and management and orga-
nization studies accumulated a complementary set of models of motivation that include
factors, such as the use-value of the software, the need for peer recognition, and kinship.
We also believe there are particular characteristics of the open source phenomenon that
made it attractive for researchers and that led to a proliferation of disciplinary research
and trans-disciplinary dialog. Next, we discuss these characteristics in more detail.

3. Characteristics that promote research

Flyvbjerg (2001) calls for social sciences to have more impact on society. In particular,
he notes that the problem of the social sciences is an inherent detachment from reality.
Natural science, in contrast, is interwoven with reality and, thus, does not face the same
problems. The criticism of social sciences typically poses an urgent question: ‘‘If you are
wrong about this, who would notice?’’ Flyvbjerg proposes a number of remedies to the
problem detachment in the social sciences, of which one is transcending the problem of
relevance by grounding research in the context studied. This implies getting close to the
phenomenon during data collection and remaining close during data analysis, feedback,
and publication. The involvement in research of stakeholders in the field who test, evalu-
ate, and comment upon the findings is key to making the research more impactful in the
social world. Moreover, Flyvbjerg asks researchers to nurture the interaction between uni-
versal principles and the particular context in building and testing theories.

Research on the open source software phenomenon is an interesting example of
research that combines scientific rigor with relevance. Open source software, perhaps
because of the distributed organization of its development as well as its intellectual prop-
erty regime, lends itself to close and often intense interaction with research. This has also
made research relevant. On the one hand, research on the open source software phenom-
enon has served to uncover features of an institutional innovation and lay these open for
scrutiny and debate among the wider public who have also taken an interest in the



242 G. von Krogh, S. Spaeth / Journal of Strategic Information Systems 16 (2007) 236–253
phenomenon. Studies of developer motivations have contributed to discussions regarding
software product quality and project sustainability (Lakhani and von Hippel, 2003; von
Krogh, 2005). Work on open source licenses contributes to a better understanding of com-
petitive dynamics in the software industry and possibly other industries producing digital
goods (The Economist, 2005). On the other hand, the phenomenon provided sufficiently
interesting research questions to trigger the curiosity of researchers and maintain their
interest over several years. This is a precondition for knowledge to accumulate in the social
sciences.

In the following, we speculate that certain characteristics of the open source software
phenomenon make it attractive and important for researchers. These characteristics also
make it a good example for the value of relevant and trans-disciplinary research. These
characteristics of the phenomenon are: social and economic impact; tension with existing
theory; transparency of the data; reflection of the community on its inner workings, and
proximity between open source innovation processes and science. As we will show, these
characteristics also lead to important questions for information systems research. As the
open source software model of innovation spreads into many fields, these questions have
become very important for researchers to bear in mind.

3.1. Impact

The open source software phenomenon has had a ubiquitous impact on society and the
economy, as we will demonstrate in five examples. First, the phenomenon has been likened
to a massive social movement in which contributors, developers, governments, and firms
collaborate to create a public good that shapes society (e.g., Holtgrave and Werle, 2001).
The magnitude of the phenomenon as a social movement is often emphasized by quoting
data from open source software project hosts. Currently, one of these hosts, Sourceforge,
lists 150,000 projects and in excess of 1.6 million contributors. In addition, open source
software has millions of users all over the world. For example, the popular ‘‘OpenOf-
fice.org’’ office suite lists in excess of 50 million users.

Second, as expected, open source software has altered global competition in the com-
puter software and hardware industries where firms traditionally competed on proprietary,
‘‘closed source’’ software. Firms that develop and sell proprietary software products have
started to adopt open source software solutions in their own product portfolio. Moreover,
a new type of firm has entered the industry, such as Suse, Red Hat, Red Flag, and MySQL
that package and distribute and sell open source software and auxiliary services. Research
has shown that open source software may be the preferred license form of new entrants
into the software industry (Bonaccorsi et al., 2006). Open source software has also chan-
ged competition in adjacent industries. Increasingly, firms ship their computer hardware
equipped with open source software products. In areas such as consumer electronics or
manufacturing technology, embedded software represents an increasing share of research
and development costs. Here, embedded open source software is increasingly used in
devices and control systems (Henkel, 2006). For example, consumer electronic firms such
as Motorola, Nokia, and Palm increasingly use Linux as operating system in their
products.

Third, in many countries the government has adopted explicit policies towards open
source software (Cook and Horobin, 2006; see also Comino and Manenti, 2005 for an
analysis). The reasons given include reduction of procurement cost, better bargaining



G. von Krogh, S. Spaeth / Journal of Strategic Information Systems 16 (2007) 236–253 243
positions, the need to support local software and service firms, the adaptability of the soft-
ware to the government’s needs, transparency of the software, and security issues. While
many governments have enthusiastically embraced open source software policies, there are
also reports of significant organizational changes needed to install and run the software,
unanticipated costs of training people, and slow migration from previous systems (e.g.,
Waring and Maddocks, 2005).

Fourth, open source software has been advocated by many as a solution for closing the
‘‘digital divide’’ by assisting developing countries in their efforts to apply information tech-
nology (Bokhari and Rehman, 1999; May, 2006). Because open source software is free and
easily accessible online, it is attractive for many users including government, home users,
schools, or business accounts. Moreover, the access to the source code as well as the trans-
parency of the development process also enables the local education and training of infor-
mation technology professionals (see Kogut and Metiu, 2001; Weber, 2004). According to
James (2002) who analyzed open source software in developing economies, one of the
challenges in such economies is to prolong the ‘‘life’’ of computers. Often actors in these
economies cannot afford to upgrade their systems at the same pace as customers in devel-
oped countries. James quotes an example from the Philippines where schools had to raise
their tuition fee every time they needed to upgrade their information systems due to a new
version of a software. Linux comes with free upgrades and ameliorates this problem for
local educational institutions. In addition, based on previous experiences from buying
commercial software licenses, many local users in developing nations are wary of locking
their institutions into software that in the future may force them to pay license fees.

Due to the rapidly growing impact of open source software on society and the econ-
omy, it became attractive for researchers from many disciplines to investigate different
aspects of the phenomenon. Due to increasing investments in information systems, includ-
ing open source and commercial software around the world, society and the economy also
had a direct interest in the results of this research. For example, governments were inter-
ested in the effect of their policies towards promoting open source software versus promot-
ing commercial software. This raised questions to economists whether open source
software was a response to market failure. Moreover, governments and firms too were
interested in understanding issues such as the quality of open source software in compar-
ison with commercial software, the cost of migrating to open source solutions, and to what
extent the phenomenon would be sustainable in the long run (see Evans, 2002).

Research that uncovered the inner workings of the open source projects also achieved
importance in the public debate and assisted in bringing the field of information systems to
the attention of the general public. It raised debates and issues about user involvement in
systems development, the advantages and disadvantages of intellectual property rights, the
cost of information systems to the public, and so forth (The Economist, 2006). With the
impact of open source software and the attractive research opportunities that open source
software affords, the interaction between the phenomenon and researchers and the larger
landscape of the economy and society in itself emerges as an important area of inquiry.
For example, Longino (1990) proposes that different fields and disciplines should investi-
gate how social values influence scientific research. Social values such as the ability to close
the digital divide, empowerment of consumers (‘‘stuff by us’’), or less costly access to intel-
lectual property may have played a role in the drafting of research agendas. This topic
remains very important as open source software continues to gain importance and as its
model of innovation is diffused to other fields. Information systems research will also



244 G. von Krogh, S. Spaeth / Journal of Strategic Information Systems 16 (2007) 236–253
benefit from an examination of the interaction between social values and information sys-
tems in society. Open source software may be just the ‘‘thing’’ to do this.

3.2. Theoretical tension

As researchers started to investigate the phenomenon in more depth, many came to
realize a growing tension between the data they were retrieving and established assump-
tions and mainstream theories. Consider two examples. First, the process of open source
software development strongly deviated from proposed models, frameworks, and
approaches to software engineering (Feller and Fitzgerald, 2002; Scacchi, 2002). Soft-
ware development typically requires a dedicated team of software engineers and other
specialists who assume different roles in the process, including specifying requirements
for the products, creating a high-level roadmap of development, writing and document-
ing the code, and assessing and testing the product. Open source software development,
on the other hand, consists of hundreds or perhaps thousands of volunteers who assume
different roles too, including founding the project and formulating its goals, writing,
reporting and fixing bugs, etc. However, in many projects roles are assumed through
‘‘self-allocation’’ based on people’s knowledge and interests. According to Madey
et al. (2002) this way of developing software is often ‘‘counterintuitive’’ and they called
for more research in order to understand the inner workings of the process. In particu-
lar, they underscored that open source software development emerged as a new way of
organizing a very large number of volunteer contributors and that this approach had no
precedent and no satisfactory explanation from theories of software engineering. Second,
open source software runs counter to many established theories of innovation (Schoo-
nhoven, 2003). von Krogh and von Hippel (2003) noted that conventional theory incen-
tives to innovate relate to the regime of intellectual property rights that offer innovators
the possibility of appropriating returns from innovation-related investments. In open
source software, licenses ensure that the software product remains a public good and
companies sometimes even support projects associated with direct competitors (Musto-
nen, 2005). Therefore, von Hippel and von Krogh called for more research to investigate
the incentives to create public good innovations.

These are just two brief examples among many that show the theoretical tensions
researchers were confronted with as they intensified their interaction with the phenome-
non. It required researchers to rethink many established theories and assumptions (e.g.,
Bessen, 2002). On the one hand, this enhanced the attractiveness of the research on the
phenomenon. Open source software represents a ‘‘critical case’’ or the possibility to ‘‘fal-
sify’’ existing theory. It also offers a possibility to combine theories, for example from eco-
nomics and sociology, in order to explain hitherto distinct and isolated phenomena (e.g.,
Bonaccorsi and Rossi, 2003). Because of new research questions (Section 2), there are also
growing possibilities for grounded theorizing along the lines called for by Flyvbjerg (e.g.,
O’Mahony, 2003; Shah, 2006).

On the other hand, open source software also represents an additional investment for
researchers who might be familiar with and sometimes have contributed to established the-
ories and research. In many cases, an additional investment is also needed to develop an
understanding of software development, in general, and the context of open source, in par-
ticular. However, judging by the growth of research over the last years, the research
opportunities seem to outweigh the cost.



G. von Krogh, S. Spaeth / Journal of Strategic Information Systems 16 (2007) 236–253 245
In our view, the popularity of open source software research was enhanced because
early research contributions pointed to theoretical tensions, rather than ‘‘confirming’’
existing models and frameworks. This also raises an important question for information
systems research in general. What are the current phenomena that deviate from existing
and accepted theory and assumptions? It seems that often the cost of searching for such
opportunities outweighs the potential benefits (which in the case of open source software
is only available when a certain amount of research has produced new insights about the
phenomenon). However, the field of information system research will benefit strongly
from encouraging early-stage, high-risk research into areas with theoretical tension.

3.3. Transparency

Often research on commercial product development is hampered by restricted access to
the development process and convoluted, or selectively, released data. Firms that commer-
cialize their software products are in most cases not interested in sharing the product’s
source code due to the risk of code spilling over to competitors or ‘‘software pirates.’’
In contrast, due to their development practices, open source software projects provide a
very high transparency of data for research. The software’s source code is generally avail-
able from repositories that host the projects, such as Sourceforge, Freshmeat or Savanna.
This enables researchers to investigate the inner, technical workings of the software and
product development process. This transparency of technical data afforded an unprece-
dented opportunity to study such issues as functionality, software architecture, file size,
language, software component reuse, application protocol interfaces, bug identification
and fixing, and individual contribution levels (e.g., MacCormack et al., 2006). Depending
on the projects’ hosts, in many cases data on software downloads would also be available.
This was used by some researchers to gauge the popularity or ‘‘market share’’ of the pro-
ject in conjunction with the number of contributors to the project (e.g., Crowston et al.,
2003; Bagozzi and Dholakia, 2006).

Moreover, most projects host mailing lists dedicated to various aspects of the software
product and the project. Some lists may focus on technical development issues, while oth-
ers may deal with user assistance, general user feedback, or discussions regarding the ‘‘phi-
losophy’’ of the project. These lists represent very valuable data for researchers because
they make discussions available that can be used to examine a host of organizational
and behavioral issues. Some important issues that can be investigated using such data
include the number of participants in the discussions, intensity of the mail exchanges, top-
ics of discussion, the number of messages related to particular topics, people’s influence in
the development process, coordination of work, decision making, conversational protocol
and etiquette, and so forth. The retrieval of both technical data and mailing lists data is in
many cases possible for all researchers, and not only restricted to those who have exclusive
relationships with developers or project entrepreneurs. For many open source software
projects, such data is extensive, covering millions of lines of code and thousands of mes-
sages and, thus, offers itself to various forms of quantitative analysis.

As research progresses on the open source software phenomenon, it becomes increas-
ingly clear that the mailing lists in most cases represents the primary means of communi-
cation between developers who work in different locations. Yet, researchers who did
extensive field work and interviewed open source software developers also found that
developers used online chats to solve issues. These chats are not stored and often not



246 G. von Krogh, S. Spaeth / Journal of Strategic Information Systems 16 (2007) 236–253
available for real-time inspection by researchers. In other cases, developers would organize
meetings or attend conferences in order to discuss development issues (O’Mahony, 2003).
It has also become increasingly clear that many developers in large projects, such as
Apache or Linux, work for the same firm (see Roberts et al., 2006; West and O’Mahony,
2005) and, thus, may meet offline. With time, research combined different types of data to
produce new insights, ranging from source code and message threads to participant obser-
vations during off-line meetings and interviews with developers and other contributors.
While many are attracted to the open source software phenomenon because of the imme-
diate transparency of the phenomenon and the access to and the ease of data retrieval, in
many projects researchers soon discover that the pursuit of rich data is important in order
to provide ‘‘thick descriptions’’ of the phenomenon (Geertz, 1973). The search for better
explanations of open source software development posed some critical questions on the
data used by researchers (e.g., von Hippel and von Krogh, 2003). This, in turn, initiated
‘‘learning and improvement’’ in the research process that triggered even more new
research.

For information systems research an important lesson from open source software
research regards the nature of data gathering. First of all, due to the social, human,
and technological dimensions of information systems research (as is the case with open
source software), high-quality empirical research is characterized by the retrieval and anal-
ysis of data from multiple sources. Moreover, the extent and availability of one type of
data (in particular, quantitative) can lure researchers into neglecting other types of data
(in particular, qualitative) that may be more costly to retrieve. Therefore, what character-
izes the quality of data in information systems research that explores a new phenomenon?
Likewise, considering the learning process of empirical research on open source software,
an important question is what are the conventions for gathering and analyzing data in
information systems research and how do these need to be adjusted to the phenomenon
under investigation.

3.4. Communal reflexivity

Delanty (2001) suggested that university-based research undergoes a transformation in
the process of knowledge production in society. Historically, the university was the pri-
mary user of the research-based knowledge it produced, predominately when educating
people. However, increasingly research-based knowledge is also produced as well as used
by many other actors in society. Interestingly, the interaction between research and the
open source software phenomenon epitomizes this shift and may help to set a precedent
for future research on information systems. The community of open source software
developers, contributors, and users share a strong interest in why, what, and how the com-
munity operates. We term the ongoing engagement in a dialog about the functioning of the
community ‘‘communal reflexivity.’’ Communal reflexivity is evident in the many online
discussions about the roles and functions of open source software and its impact on the
economy and society. In addition, a search on ’Google Blogs’ reveals more than one mil-
lion entries using the term: ‘‘open source software’’ of which several thousand are devoted
to the development process and the functioning of the community. Google also archives
nearly 4000 Usenet discussion groups dedicated to the Linux open source operating sys-
tem. Many books about the open source software phenomenon have been written by
developers and very active participants in the open source software community. For exam-



G. von Krogh, S. Spaeth / Journal of Strategic Information Systems 16 (2007) 236–253 247
ple, the ground-breaking and famous book by Eric S. Raymond (1999) can be seen as ini-
tiating much of the research and dialog on the functioning of the community. Raymond,
himself an open source project entrepreneur, developer, and trained anthropologist,
embodies the dialog between research and open source software practice. Furthermore,
a number of conferences about the open source software development model include prac-
titioners in the field and, increasingly, developers and participants are also involved in
tracks of mainstream academic conferences.

We would like to offer a reason for the evolution of communal reflexivity. Open source
software development can be seen as an ‘‘institutional innovation’’ (Hargrave and Van de
Ven, 2006; O’Mahony, 2002). As discussed in Section 2, open source software involves a
very large number of contributors, it uses simple technologies for coordinating work, it
draws upon direct feedback and improvement by users, it produces a public good with
considerable market and economic impact, and so forth. Observers have noted that open
source products, such as Linux, emulate already existing software products in their design,
such as commercial Unix variants. The same holds for OpenOffice.org, an office suite that
emulates Microsoft Office. These previous designs provided guidelines for software devel-
opers and allowed them to observe and design important features and benchmark their
design for performance.

Regardless of the software product design, however, the ‘‘institution’’ of open source
software development evolved without templates or guidelines. In order to resolve issues
that could potentially threaten the survival and advancement of the institution, intense
self-observation and dialog is called for by the community. For example, professional
and corporate users of open source software frequently question both the sustainability
of project organization and the quality of the software. Migrating systems from commer-
cial to open source software entails significant costs for many professional and corporate
users. This prompted a discussion on the risk of developers losing interest in the software
and so discontinuing a project. Because open source software does not necessarily guaran-
tee upgrades and updates, but rather relies on the initiative of voluntary developers, many
professional and corporate users felt uneasy about implementing systems migration. How-
ever, the Open Source Initiative, the Apache foundation, the Free Software Foundation,
and other entities attempted to analyze if and why open source software would rival com-
mercial software in terms of sustainability and, thereby, counter these arguments. One of
their claims, for example, was that software firms that went bankrupt would represent an
equal level of risk to professional and corporate users. Without a firm to back it up, com-
mercial software would not be developed further. Discussions, therefore, began to center
around the motives and incentives for developers to contribute to open source software
projects. Observers of the phenomenon offered their own reflections on incentives and
an important dialog evolved between academic research on innovation incentives and
the community of open source developers and contributors. Examples of studies that
fueled this dialog include Lakhani and Wolf (2005), Ghosh et al. (2002), and Hertel
et al. (2003).

Critics of open source software and corporate users also questioned the quality of open
source software. Research using bug report data (e.g., Kuan, 2001) showed that flaws in
open source software did not exceed those of commercial software that performed the
same functions. Research by Franke and von Hippel (2003) also showed that users in gen-
eral were more satisfied with the software product which they could change to fit their spe-
cific needs. Moreover, studies revealed that software product ‘‘quality’’ was secured by



248 G. von Krogh, S. Spaeth / Journal of Strategic Information Systems 16 (2007) 236–253
allowing only a select group of developers the possibility to implement changes to the soft-
ware code, although the ideas, bug fixes, or software patches might have come from a large
number of contributors (von Krogh et al., 2003). These and similar studies were noticed
and commented upon by the open source community in conjunction with discussions
about product quality.

A very vocal community of contributors and developers, resident contributors who also
researches the phenomenon, and an emerging stream of scientific research evolves a com-
munal reflexivity. This communal reflexivity, we believe, is critical to the institutional
innovation represented by open source software development. As this institution gradually
forms and enhances its economic and social impact, it also draws more attention amongst
researchers who engage in trans-disciplinary research. Thus, open source software repre-
sents an interesting case of institutional innovation where a condition is communal reflex-
ivity interacting with academic research. When Bent Flyvbjerg asks for social science to
matter, we believe that the impact that social science can have is very much demonstrated
in the interaction between the stakeholders surrounding the open source software phenom-
enon and academic researchers. Based on this observation, an important question is how
information systems research can increase its impact on the economy and society in other
areas too by building similar interactions with a broad range of phenomena.

3.5. Proximity

Finally, commentators have noted that open source software development resembles
the process of doing science. Science has the objective of creating a public good (David,
2005) and its results are mostly possible to digitize and distribute over the Internet. Bez-
roukov (1999) classifies programming as a special kind of scientific activity in which an
idea or a proposition is encoded. In open source software, modifications are based on
the input from many peers around the world. Likewise in science, capturing research
results in papers, presentation of papers at academic conferences, revising papers for jour-
nal publications, and so forth requires good feedback from peers. Both open source soft-
ware development and increasingly science build on the work of ‘‘virtual teams’’ where
collaborators are located all over the world. Bezroukov (1999) also suggests that contrib-
utors to open source software and science are motivated by factors such as learning, peer
recognition, and fun rather than monetary incentives. Yet, an important difference in
motivation also marks an important difference between science and open source software.
While open source software developers are often motivated by the use value of their soft-
ware products (von Hippel, 2002), most scientists cannot directly apply what they create in
their laboratories to their lives.

Moreover, Bezroukov (1999) also notes that financing of open source projects may be
similar to the financing of science. In many cases, scientific research is funded indirectly. In
this scheme, individuals employed in an institution become interested in a particular phe-
nomenon and step forward to conduct research with existing slack funds. Many open
source software developers also work either in academic institutions or large corporations.
For example, 50% of all developers in Linux work for firms (LWN, 2007). Large corpo-
rations may provide the necessary slack funds for open source software development just
as they do for research projects.

An increasing number of large corporations, including IBM, Hewlett–Packard, Novell,
and SAP, sell packaged open source software with their hardware or commercial software



G. von Krogh, S. Spaeth / Journal of Strategic Information Systems 16 (2007) 236–253 249
products and, thus, view open source software as a strategic asset to their business. Many
of these firms choose to dedicate development resources to open source software projects,
either internally or through collaborative development projects such as the Open Source
Software Development Lab. This approach resembles dedicated funding of research pro-
jects in universities and research labs.

In many cases, the outcome of applied science is itself open source software code. For
example, Mascialino et al. (2006) report on a project for developing an open source soft-
ware statistical toolkit for data analysis in experimental particle and nuclear physics. The
example is interesting because the authors report on how improvements have been made
to facilitate better statistical analysis in a scientific field. The paper resembles a ‘‘message’’
in a developer mailing list, introducing and reporting on the performance of new features
such goodness-of-fit tests, new implementations of existing tests, a new component to
extend the usability of the toolkit with other data analysis systems, and new tools for soft-
ware configuration, etc.

We believe the strong proximity between open source software and science contributes
to a faster and easier understanding of the phenomenon amongst researchers. We also
believe this makes the phenomenon very attractive for researchers coming from many
fields and disciplines. In many disciplines, the open source software development process
resembles the creation of science and, hence, the phenomenon opens up an interesting dia-
log between researchers from these various disciplines. Whereas researchers may pursue
very different research questions and gather and analyze data differently, we all find our-
selves embedded in similar processes of creating science by many similar rules. Observing
the mirror image of open source software development makes this apparent and it may
also bring to the forefront the strengths and weaknesses of science and indicate a way
to improve the scientific enterprise.

Information systems are embedded in academic life which allows a strong proximity
between the actual use of systems in a university and research setting and their use in a
corporate setting. For example, the development, adaptation, and implementation of an
enterprise resource planning software may encounter many of the same opportunities
and challenges in universities and corporations. This proximity is an opportunity for infor-
mation systems research that can be formulated as a question: in which areas of inquiry is
‘‘proximity’’ instrumental in enabling researchers to pose interesting and relevant research
questions?
4. Conclusion

In this essay, we briefly reviewed select research contributions that shed light on the
open source software phenomenon. These contributions come from different fields and
we argued that the phenomenon brought forth an important trans-disciplinary dialog.
Subsequently, we attempted to define the characteristics of the open source software phe-
nomenon that triggered a massive amount of research from different fields and disciplines.
These were impact of the phenomenon, transparency of the phenomenon, theoretical ten-
sion arising from the phenomenon, communal reflexivity, and proximity between science
and the phenomenon. We also showed that these characteristics of the open source soft-
ware phenomenon and the lessons learned from research on this phenomenon lead to
important questions for information systems research. These questions are:



250 G. von Krogh, S. Spaeth / Journal of Strategic Information Systems 16 (2007) 236–253
1. What is the relationship between social values and the evolution of information systems
in society?

2. What are the current and emerging social and economic phenomena that deviate from
existing and accepted theory and assumptions in information systems research?

3. What characterizes the quality of data in information systems research that explores a
new phenomenon?

4. How can information systems research strengthen its interaction with a broad set of
phenomena?

5. In which areas of inquiry is proximity between science and the phenomenon instrumen-
tal in enabling information systems researchers to pose interesting and relevant research
questions?

As open source software has shown, an important challenge of social science is to iden-
tify new theories and research designs to understand existing phenomena more efficiently
and/or effectively. In many ways, open source software emerged and needed an explana-
tion. However, another, sometimes forgotten, challenge is to actively search for phenom-
ena that call for new theories and research designs. Because social science like open source
software is a collective effort that hinges on the mobilization of people and other resources,
the distinctiveness of the phenomenon is important. Over time, when more people join in,
researchers are likely to develop a deeper and more collective knowledge of the phenom-
enon. Given the resource and time constraints facing all researchers, the wish to make a
contribution where science matters is often substantive. Hence, in the early stages of
research, interested researchers need to ‘‘envision’’ such new and distinct phenomena
and reflect upon the contributions that science can make. Based on the analysis of the
open source software phenomenon, perhaps the five characteristics listed will be helpful
in this process.

It is uncertain to what extent the five characteristics of the open source software phe-
nomenon can ‘‘replicate’’ themselves to other industries, sectors, and systems. However,
open source principles are currently ‘‘experimented with’’ in other areas. For example,
in cultural goods, a new type of news reporting involves thousands of citizens who write
stories about what they observe and experience. These stories are then submitted for edit-
ing to a newspaper desk. In biotechnology, GNU-like licenses are applied to tools for
genetic research. Currently, medicines for malaria and drugs for other neglected deceases
are being developed using open source models where universities, firms, individual
researchers, and NGOs cooperate in drug development. In technical design, new open
source market places are emerging where ‘‘customers’’ can pose problems and interested
engineers and industrial designers worldwide can design and deliver possible solutions.
However, it is still uncertain if the ‘‘open source principles,’’ in particular regarding public
good innovations and intellectual property rights, will lead to the same level of social and
economic impact in these other fields. Yet, we believe the gradual adoption of open source
principles in other fields represents an opportunity for researchers from various fields and
disciplines to explore the principles’ general applicability. With increasing public attention
and allocation of resources to the diffusion of open source principles in other fields, it will
be social science that matters (research with a very high value and impact on society).

The field of information systems is one of the core pillars in open source software.
Information systems products emanate in great numbers from open source software pro-
jects. Equally interesting is that the mailing lists and concurrent versions systems discussed



G. von Krogh, S. Spaeth / Journal of Strategic Information Systems 16 (2007) 236–253 251
above are lightweight information systems that enable effective software development.
Given how open source software is transforming industries, the field of information sys-
tems research is at the heart of a new model of innovation that allows thousands of col-
laborators globally to create high-quality products. Since the design of most products
(even physical products) can be digitized and, therefore, shared at low cost, the diffusion
of this innovation model to other fields is likely to be rapid. In order to secure the best
possible understanding of the open source phenomenon as it continues to spread, informa-
tion systems research should remain open to dialog with other areas and disciplines. It is
then that creativity can flourish, new unprecedented insights can be gained, and new phe-
nomena discovered (Galliers, 2003). These are wonderful times for information systems
scholars.

References

Bagozzi, R.P., Dholakia, U.M., 2006. Open source software user communities: A study of participation in Linux
user groups. Management Science 52 (7), 1099–1115.

Baldwin, C.Y., Clark, K.B., 2006. The architecture of participation: Does code architecture mitigate free riding in
the open source development model ?. Management Science 52 (7) 1116–1127.

Benkler, Y., 2002. Coase’s penguin, or Linux and the nature of the firm. Yale Law Journal 112 (3), 369–447.
Bergquist, M., Ljungberg, J., 2001. The power of gifts: Organising social relationships in open source

communities. Information Systems Journal 11 (4), 305–320.
Bessen, J., 2002. Open source software: Free provision of complex public goods. Technical report, Research on

Innovation.
Bezroukov, N., 1999. Open source software as a special type of academic research. First Monday 4 (10).
Bokhari, S.H., Rehman, R., 1999. Linux and the developing world. IEEE Software 16 (1), 58–64.
Bonaccorsi, A., Giannangeli, S., Rossi, C., 2006. Entry strategies under competing standards: Hybrid business

models in the open source software industry. Management Science 52 (7), 1085–1098.
Bonaccorsi, A., Rossi, C., 2003. Why open source software can succeed. Research Policy 32 (7), 1243–1258.
Brooks Jr., F.P., 1995. The Mythical Man-Month: Essays on Software Engineering. twentieth Anniversary ed.,

Addison-Wesley.
Casadesus-Masanell, R., Ghemawat, P., 2006. Dynamic mixed duopoly: A model motivated by Linux vs.

Windows. Management Science 52 (7), 1072–1084.
Comino, S., Manenti, F.M., 2005. Government policies supporting open source software for the mass market.

Review of Industrial Organization 26 (2), 217–240.
Cook, I., Horobin, G., 2006. Implementing eGovernment without promoting dependence: Open source software

in developing countries in Southeast Asia. Public Administration and Development 26 (4), 279–289.
Crowston, K., Annabi, H., Howison, J., 2003. Defining open source software project success. In: Proceedings of

the 24th International Conference on Information Systems (ICIS 2003).
Crowston, K., Howison, J., 2006. Hierarchy and centralization in free and open source software team

communications. Knowledge, Technology, and Policy 18 (4), 65–85, Special Issue on Open Source.
Dahlander, L., Magnusson, M.G., 2005. Relationships between open source companies and communities:

Observations from Nordic firms. Research Policy 34, 481–493.
Dalle, J.-M., David, P.A., 2003. The allocation of software development resources in ‘open source’ production.

Discussion Paper of The Stanford Institute For Economic Policy Research.
David, P.A., 2005. From keeping ‘nature’s secrets’ to the institutionalization of ‘open science’. In: Ghosh,

R.A. (Ed.), Code: Collaborative Ownership and the Digital Economy. MIT Press, Cambridge, MA, pp.
85–108.

Delanty, G., 2001. Challenging Knowledge: The University in the Knowledge Society. Open University Press,
Buckingham.

Demil, B., Lecocq, X., 2006. Neither market nor hierarchy nor network: The emergence of bazaar governance.
Organization Studies 27 (10), 1447–1466.

Economides, N., Katsamakas, E., 2006. Two-sided competition of proprietary vs. open source technology
platforms and the implications for the software industry. Management Science 52 (7), 1057–1071.



252 G. von Krogh, S. Spaeth / Journal of Strategic Information Systems 16 (2007) 236–253
Evans, D.S., 2002. Politics and programming: Government preferences for promoting open source software. In:
Hahn, R.W. (Ed.), Government Policy Toward Open Source Software. Brookings Institution Press, pp. 34–
49, chapter 3.

Feller, J., Fitzgerald, B., 2002. Understanding Open Source Software Development. Addison-Wesley, London,
UK. Foreword by Eric S. Raymond. Companion Website.

Flyvbjerg, B., 2001. Making Social Science Matter: Why Social Inquiry Fails and How it Can Succeed Again.
Cambridge University Press.

Franck, E., Jungwirth, C., 2003. Reconciling investors and donators: The governance structure of open source.
Journal of Management and Governance 7, 401–421.

Franke, N., von Hippel, E., 2003. Satisfying heterogeneous user needs via innovation toolkits: The case of
Apache security software. Research Policy 32 (7), 1199–1215.

Galliers, R.D., 2003. Change as crisis or growth? toward a trans-disciplinary treatment of information systems as
a field of study: A response to Benbasat and Zmud’s call for returning to the IT artifact. Journal of the
Association for Information Systems, 4(6), 337–351. Available at http://jais.isworld.org.

Geertz, C., 1973. The Interpretation of Cultures. Basic Books, New York.
Ghosh, R.A., Glott, R., Krieger, B., Robles, G., 2002. Free/Libre and open source software: Survey and study

(FLOSS). http://www.infonomics.nl/FLOSS/report/.
Hargrave, T., Van de Ven, A.H., 2006. A collective action model of institutional innovation. Academy of

Management Review 31 (4).
Henkel, J., 2006. Selective revealing in open innovation processes: The case of embedded Linux. Research Policy

37 (7), 953–969.
Hertel, G., Niedner, S., Herrmann, S., 2003. Motivation of software developers in open source

projects: An internet-based survey of contributors to the Linux Kernel. Research Policy 32 (7),
1159–1177.

von Hippel, E., 2002. Horizontal innovation networks – by and for users. Working Paper.
von Hippel, E., von Krogh, G., 2003. Open source software and the ‘‘private-collective’’ innovation model: Issues

for organization science. Organization Science 14 (2), 209–223.
Holtgrave, U., Werle, R., 2001. De-commodifying software? open source software between business strategy and

social movement. Science Studies 14 (2), 43–65.
James, J., 2002. Low-cost information technology in developing countries: Current opportunities and emerging

possibilities. Habitat International 26, 21–31.
Janco Associates, Inc., 2006. Browser market share study. http://www.e-janco.com.
Koch, S., Schneider, G., 2002. Effort, cooperation and coordination in an open source software project: Gnome.

Information Systems Journal 12 (1), 27–42.
Kogut, B.M., Metiu, A., 2001. Open-source software development and distributed innovation. Oxford Review of

Economic Policy 17 (2), 248–264, Special Issue on The Internet.
von Krogh, G., 2005. Open for business. In Global Agenda: The Magazine of the World Economic Forum, 3,

186–189. World Economic Forum.
von Krogh, G., Spaeth, S., Lakhani, K., 2003. Community, joining, and specialization in open source software

innovation: A case study. Research Policy 32 (7), 1217–1241.
von Krogh, G., von Hippel, E., 2003. Special issue on open source software development. Research Policy 32 (7),

1149–1157, Editorial.
von Krogh, G., von Hippel, E., 2006. The promise of research on open source software. Management Science 52

(7), 975–983.
Kuan, J., 2001. Open source software as consumer integration into production. Working Paper.
Kuk, G., 2006. Strategic interaction and knowledge sharing in the KDE developer mailing list. Management

Science 52 (7), 1031–1042.
Lakhani, K.R., von Hippel, E., 2003. How open source software works: ‘‘free’’ user-to-user assistance. Research

Policy 32 (6), 923–943.
Lakhani, K.R., Wolf, R.G., 2005. Why hackers do what they do: Understanding motivation and effort in free/

open source software projects. In: Feller, J., Fitzgerald, B., Hissam, S., Lakhani, K.R. (Eds.), Perspectives on
Free and Open Source Software. MIT Press.

Lerner, J., Tirole, J., 2002. Some simple economics of open source. Journal of Industrial Economics, 52.
Longino, H.E., 1990. Science as Social Knowledge. Princeton University Press, Princeton.
LWN.net, 2007. Who wrote 2.6.20? published on February 20, 2007 by Jonathan Corbet., Available at http://

lwn.net/Articles/222773/.

http://jais.isworld.org
http://www.infonomics.nl/FLOSS/report/
http://www.e-janco.com
http://lwn.net/Articles/222773/
http://lwn.net/Articles/222773/


G. von Krogh, S. Spaeth / Journal of Strategic Information Systems 16 (2007) 236–253 253
MacCormack, A., Rusnak, J., Baldwin, C.Y., 2006. Exploring the structure of complex software
designs: An empirical study of open source and proprietary code. Management Science 52, 1015–
1030.

Madey, G., Freeh, V., Tynan, R., 2002. The open source software development phenomenon: An analysis based
on social network theory. In Americas Conference on Information Systems (AMCIS2002), Dallas, TX, pp.
1806–1813.

Mascialino, B., Pfeiffer, A., Pia, M.G., Ribon, A., Viarengo, P., 2006. New developments of the goodness-of-fit
statistical toolkit. IEEE Transactions on Nuclear Science 53 (6), 3834–3841.

May, C., 2006. The FLOSS alternative: TRIPs, non-proprietary software and development. Knowledge,
Technology, and Policy 18 (4), 142–163.

Mustonen, M., 2003. Copyleft – the economics of Linux and other open source software. Information Economics
and Policy 15 (1), 99–121.

Mustonen, M., 2005. When does a firm support substitute open source programming? Journal of Economics and
Management Strategy 14 (1), 121–139.

netcraft.com, 2007. March 2007 web server survey. Accessed March 16, 2007.
Nonnecke, B., Preece, J., 2003. Silent participants: Getting to know lurkers better. In: Leug, C., Fisher, D. (Eds.),

From Usenet to CoWebs: Interacting with Social Information Spaces. Springer, Amsterdam, Holland.
Olson, M., 1965. The Logic of Collective Action: Public Goods and the Theory of Groups. Harvard University

Press.
O’Mahony, S.C., 2002. The Emergence of a New Commercial Actor: Community Managed Software Projects.

Ph.D. thesis, Stanford University. Doctoral Dissertation.
O’Mahony, S.C., 2003. Guarding the commons: How community managed software projects protect their work.

Research Policy 32 (7), 1179–1198.
Raymond, E.S., 1999. The Cathedral & The Bazaar, 1 Ed. O’Reilly, Sebastopol, CA.
Roberts, J.A., Hann, I.-H., Slaughter, S.A., 2006. Understanding the motivations, participation, and

performance of open source software developers: A longitudinal study of the Apache projects. Management
Science 52 (7), 984–999.

Scacchi, W., 2002. Understanding requirements for developing open source software systems. IEE Proceedings –
Software 149 (1), 24–39.

Schoonhoven, C.B., 2003. Open source software and the ‘‘private-collective’ innovation model: Issues for
organization science. Organization Science 14 (2), 208.

Shah, S.K., 2006. Motivation, governance, and the viability of hybrid forms in open source software
development. Management Science 52 (7), 1000–1014.

Stewart, D., 2005. Social status in an open-source community. American Sociological Review 70, 823–842.
The Economist, 2005. The triumph of the commons. The Economist, pp. 55–56, February 12th.
The Economist, 2006. Open-source business. The Economist. March 16th.
Waring, T., Maddocks, P., 2005. Open source software implementation in the UK public sector: Evidence from

the field and implications for the future. International Journal of Information Management 25 (5), 411–428.
Weber, S., 2004. The Success of Open Source. Harvard University Press.
West, J., 2003. How open is open enough? Melding proprietary and open source platform strategies. Research

Policy 32 (7), 1259–1285.
West, J., O’Mahony, S.C., 2005. Contrasting community building in sponsored and community founded open

source projects. In Proceedings of the 38th Annual Hawaii International conference on System Sciences (Jan
2005).

Zeitlyn, D., 2003. Gift economies in the development of open source software: Anthropological reflections.
Research Policy 32 (7), 1287–1291.

http://netcraft.com

	The open source software phenomenon: Characteristics that promote research
	Introduction
	Open source software: A fertile phenomenon for research and trans-disciplinary dialog
	Characteristics that promote research
	Impact
	Theoretical tension
	Transparency
	Communal reflexivity
	Proximity

	Conclusion
	References


